Total Syntheses of Enantiomerically Pure D- and L-Glycosyl Donors as Components of Sannamycin-type Aminoglycoside Antibiotics

Christian Ludin, Berit Schwesinger, Reinhard Schwesinger, Walter Meier, Bernhard Seitz, Thomas Weller, Christoph Hoenke, Stephan Haitz, Silke Erbeck and Horst Prinzbach*
Chemisches Laboratorium der Universität Freiburg i.Br., Institut für Organische Chemie und Biochemie, Albertstraße 21, 79104 Freiburg i.Br., Germany

Abstract

Both enantiomers of purpurosaminides C (ent-7b, 13a-c), of a 2 -azido analogue (ent-16b) and of 2-azido epimers (ent-26b, ent-29b), suitably protected for their direct use as glycosyl donors, are prepared from racemic 3.4-dihydro-2H-pyran-2-carbaldehyde (acrolein dimer, rac-1). The latter has been resolved on a preparative scale through the diastereoisomeric trifluoroacetylated 1'-amines obtained with (1R)- and (1S)-1-phenylethylamine, which allowed the combination of optical resolution with the introduction of the glycosyl 6-amino function.

Fortimicins, ${ }^{1}$ sannamycins ${ }^{2}$ and sporaricins ${ }^{3}$ are members of a relatively young family of aminoglycoside antibiotics of which one (Fortimicin A) has been used commercially since $1985 .{ }^{4}$ Their broad antibacterial activity, combined with reduced side effects, and their relatively simple binuclear structure made them attractive targets for chemical modification and total synthesis. ${ }^{5}$

With the greater part of the respective aglyca-fortamines, ${ }^{6}$ epi-fortamines, ${ }^{7}$ sannamines, ${ }^{8}$ sporamines ${ }^{9}$-now available to us not only as racemates but also as natural and non-natural enantiomers, suitably protected as glycosyl acceptors, ${ }^{10.11}$ the total synthesis of glycosides in all possible combinations of the sugar and aglycon enantiomers-particularly the mirror images of the natural antibiotics-became the central theme of this project. ${ }^{12}$
In this paper we detail our activities as they were directed towards the synthesis of the glycosyl donors utilized in the construction of variously modified antibiotics, again in the form of both enantiomers: $\mathrm{D}-/ \mathrm{L}-\mathbf{A} / \mathbf{B}$, the purpurosaminides C (as $\mathrm{D}-$ enantiomers found in the sannamycins); D-/L-C/D, the 2-azido analogues, and D-/L-E/F, the 2-epimers of the donors \mathbf{C} / \mathbf{D}. The decision in making the choice of the leaving group L and of the protecting groups $\mathrm{R}^{1}-\mathrm{R}^{3}$ was dictated by the glycosylation methodology to be ultimately applied; for reasons which will be commented upon in subsequent papers devoted to the ultimate aminoglycoside antibiotics, ${ }^{12.13}$ acetate as leaving group ($\mathrm{L}=$ $\mathrm{OAc})$ became the first choice. Protection at $2-\mathrm{N}\left(\mathrm{R}^{3}\right)$ was generally provided by either a DNP (2,4-dinitrophenyl) group or in form of the N_{3} substituent, and at $6-\mathrm{N}\left(\mathrm{R}^{1}, \mathrm{R}^{2}\right)$ by a DNP or an alkyl group.

A short recollection of the most pertinent reported syntheses of purpurosamines is appropriate for putting our contribution into proper context. For enantiopure D-methylpurpurosaminides $\mathrm{C},{ }^{14-18} \mathrm{~B}$ and 6 -epi- B^{19-24} a number of syntheses had been accomplished, ${ }^{14}$ some of them exploiting various natural sources. Except for a few, ${ }^{23,24}$ they do not directly lead to purpurosaminides appropriately protected to be used as glycosyl donors. Above all, no l-enantiomer of any such purpurosamine B or C has so far been described, to the best of our knowledge. Closely related to the subject of this paper is the synthesis developed by Brimacombe et al. for racemic purpurosaminides C (and 2-epimers) which is based on dimeric acrolein. ${ }^{25}$

[^0]

$E\left(R^{1}=H\right)$
F ($\mathrm{R}^{1}=\mathrm{Me}$)
(only the D -enantiomers are shown)

Results and Discussion

N-Protected (2R/2S)-2-Aminomethyl-3,4-dihydro-2H-pyrans. ${ }^{26}$-The general strategy in our venture for enantiomerically pure glycosyl donors of type A-F was patterned after the Brimacombe synthesis for racemic methylpurpurosaminide C^{25} insofar as the racemic 3,4-dihydro-2H-pyran-2-carbaldehyde 1 (as acrolein dimer, a cheap industrial product) \dagger serves as starting material, into which the 2 -amino group of the ultimate glycone is introduced by addition of NOCl. ${ }^{27}$ Our essential modification is concerned with the way in which the installation of the 1 '-amino group into rac-1-the 6 -amino group of the glycone-is combined with the optical resolution. Scheme 1 presents the main steps of this approach, which in principle consists in the formation of diastereoisomeric 1'-methylamino pyrans with the $(1 R) /(1 S) 1$-phenylethylamines $\mathbf{2} /$ ent- $\mathbf{2}$ as chiral sources ($\mathbf{3} / \mathbf{3}^{\prime}$, ent $-3 /$ ent $-\mathbf{3}^{\prime}$) and their separation.

Condensation of rac-1 with ($1 R$)-1-phenylethylamine 2 in dry ethanol, reduction of the resulting imines with sodium boranuide and distillative work-up led to an oily mixture of the diastereoisomeric amines $3(\mathrm{D} R)$ and $\mathbf{3}^{\prime}(\mathrm{L} R)$ in an averaged 76% yield on a 0.85 molar scale. When the separation of these amines by fractional crystallization from various solvents had turned out to be impractical, when separation by distillation (difference in boiling points $\sim 10^{\circ} \mathrm{C}$) had failed because of formation of an

${ }^{3} \mathrm{H}^{+}$
m.p. $\left({ }^{\circ} \mathrm{C}\right) 185$

ent-2 $\left(S^{*} \mathrm{NH}_{2}\right)$

Scheme 1 Reagents: i, $(1 R) /(1 S)$-1-phenylethylamine; ii, NaBH_{4}; iii, $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$, pyridine. Throughout the paper, the substituents $R^{*} \mathrm{NH}$ and $S^{*} \mathrm{NH}$ are used to represent $(1 R)$ - and ($1 S$)-phenylethylamino, respectively.
azeotrope and insufficient stability, and when chromatographic separation had been satisfactory only on a small scale (g), resort was made to the differing basicity of diastereoisomers $\mathbf{3}$ and $\mathbf{3}^{\prime}$. After addition of 0.5 mole equivalent of 3,5-dinitrobenzoic acid to the original mixture of compounds $\mathbf{3} / \mathbf{3}^{\prime}(135.5 \mathrm{~g}, 0.62 \mathrm{~mol})$, as hot, appropriately concentrated solutions in MeCN, it was, however, not a single ($\mathrm{D} R$ or $\mathrm{L} R$) salt but a mixture of the salts $\mathbf{3 H}{ }^{+} / \mathbf{3}^{\prime} \mathrm{H}^{+}$which deposited as a brownish solid after slow cooling to $5^{\circ} \mathrm{C}$. For the material filtered off under reduced pressure after 3 h -the composition can be qualitatively monitored by TLC- ${ }^{1} \mathrm{H}$ NMR analysis (based on the well separated $1^{\prime}-\mathrm{H} / 2-\mathrm{H}$ signals) confirmed a ratio in favour of the $\mathrm{D} R$ salt $3 \mathrm{H}^{+}$of up to $6: 1$. Treatment of this mixture with base provided the respective mixture of the amines $(57.4 \mathrm{~g}, 76 \%)$. Small quantities of pure oily compounds $\mathbf{3}$ and $\mathbf{3}^{\prime}$ were obtained by chromatography; they were characterized by their optical rotation, NMR and mass spectra and analysed as crystalline 3,5 -dinitrobenzoates. Since for the subsequent NOCl addition (Scheme 2) protection of the amino group and high purity of the glycal were needed, the search went next for a protecting group at $1^{\prime}-\mathrm{NH}_{2}$ of compounds $3 / \mathbf{3}^{\prime}\left(\mathrm{R}^{1}\right)$, which would provide solid derivatives which are sufficiently stable to allow the largescale separation of the enriched 6:1 mixture by fractional crystallization. Out of several tested alternatives $\left(\mathbf{4 a - e ^ { 2 6 }}\right.$), the
trifluoroacetamides $\mathbf{4 a} / \mathbf{4}^{\prime} \mathbf{a}$ proved superior with respect to separability and yield along the way to the respective 2 (hydroxyimino)glycosides $\mathbf{5 a - e}$. In fact, fractional crystallization of a batch (40 g) of the respective mixture $4 \mathbf{a} / \mathbf{4}^{\prime} \mathbf{a}$ from methanol provided an averaged $46 \mathrm{~g}(77 \%)$ yield of practically pure $4 \mathrm{a}\left\{\mathrm{m} . \mathrm{p} .68^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}+99 \times 10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}\right.$ (c 0.99 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); the absolute configuration has previously been confirmed $\left.{ }^{26}\right\}$. Samples of pure oily compound 4 'a, not accessible through crystallization of the $\sim 1: 9$ enriched oily residue, were obtained for characterization through chromatography $\left\{[\alpha]_{\mathrm{D}}^{20}-4 \times 10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}\left(c 1.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$. In line with this finding, unsurmountable difficulties were met in our attempts to secure by crystallization the greater part of compound 4^{\prime} a from the complex oily mixture of compounds $\mathbf{3} / \mathbf{3}^{\prime}$ and $\mathbf{3} \mathrm{H}^{+} / \mathbf{3}^{\prime} \mathrm{H}^{+}$left after the crystallization from MeCN .
Access to crystallizable, pure derivatives of the L-series were sought instead through condensation of rac-1 with ($1 S$)-1phenylethylamine (ent-2). As expected, it was the $\mathrm{L} S$-amide ent$4 \mathbf{a}\left\{[\alpha]_{\mathrm{D}}^{20}-98 \times 10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}\left(c 0.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$, which as the less soluble diastereoisomer, could be secured analogously to its enantiomer 4 a and with comparable yield via the enriched mixture of amines ent-3/ent-3'. Pure samples of ent-3' and ent4^{\prime} a $\left\{[\alpha]_{\mathrm{D}}^{20}+6 \times 10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}\left(c 0.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$ were again collected chromatographically for characterization.

Scheme 2 Reagents: i, $\mathrm{NOCl}, \mathrm{MeOH}$; ii, NaCNBH_{3}; iii, $\mathrm{Pd}-\mathrm{C}, \mathrm{H}_{2}$; iv, Z-Cl; v, NaBH_{4}; vi, DNP-F, NaHCO_{3}; vii, $\mathrm{NaBH}_{4}, \mathrm{MoO}_{3}$; viii, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$; ix, $\mathrm{AcOH}-1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$ (1.3:1); $\mathrm{x}, \mathrm{Ac}_{2} \mathrm{O}$, pyridine

Clearly, this way to 'resolve' rac-1 on a large scale in the form of the enantiomers $4 \mathbf{a}$ and ent-4a, with loss of amines $4^{\prime} \mathbf{a}$ and ent-4'a, is costly as well as time consuming. In addition, fractional crystallization of the diastereoisomeric dinitrobenzoates was found to be somewhat critical in that reproduction of the stated degree of enrichment $(6: 1)$ and of the average yield requires some experience. For the repeated preparation of compound $\mathbf{4 a}$ (ent-4a) a shortening of the preparative protocol by omission of the enrichment step at a slightly reduced yield was elaborated. To this end, the $1: 1$ mixture (0.5 mol) of the amines $\mathbf{3 / 3} \mathbf{3}^{\prime}$ (ent-3/ent- $\mathbf{3}^{\prime}$) was directly transformed into the $1: 1$ mixture of amides 4a/4'a (ent-4a/ent-4'a). Fractional crystallization from methanol allowed the collection of an average 49.4 g of pure compound $\mathbf{4 a}$ (ent-4a) corresponding to 63% of the theoretical yield.

D-/L-Purpurosamine C Donors A.-In the planning stage, the procedure from the 6 -aminomethyl glycals 4 to appropriately protected glycosyl donors of type A (e.g., 7, Scheme 2) had implied protection of the 1^{\prime}-amino group, regiospecific addition
of NOCl to the $\mathrm{C}=\mathrm{C}$ double bond, tautomerization with subsequent elimination of HCl (see structure 10), efficient and highly α-selective glycosylation with methanol, stereospecific reduction of the oximes to give α-hydroxylamines, and, after appropriate group manipulations, expeditious transformation of the methyl glycosides into the glycosyl donors.
Given the lack of the stabilizing as well as stereodirecting Ofunctionalities at $\mathrm{C}-3 / \mathrm{C}-4$ in glycals 4 , present in the pioneering study of Lemieux et al., ${ }^{27}$ and the different substitution at $\mathrm{C}-1^{\prime}$ compared with the Brimacombe substrates, ${ }^{25}$ most of the above stated assumptions and expectations were, however, risky. And, indeed, there were surprises all along this route. An exploratory NMR study of the course of the addition of NOCl to compounds $\mathbf{4 a - e}$ (standardized conditions, $10-50 \mathrm{mg}$ samples, not detailed in the Experimental section) made it rapidly clear that neither the primary NOCl adducts $\mathbf{8 a - e}$-independent of the nature of R^{1} group-nor the nitrosoenes $\mathbf{1 0 a - e}$ were stable enough to be directly observed $\left(-70^{\circ} \mathrm{C}\right)$ and that at lowtemperature nitro sodimers (cis/trans-isomers, e.g., 9) were formed, ${ }^{28}$ which underwent configurational changes as the temperature was raised (Scheme 3). After concentration of the

Scheme 3 Reagents and conditions: i, NOCl, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; ii, $\mathrm{MeOH}, 2,4,6$-collidine, $\mathrm{DMF},-78^{\circ} \mathrm{C} \longrightarrow$ room temp.
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions at $-70^{\circ} \mathrm{C}$, and treatment of the bluish solids ($\mathbf{8 a}, \mathbf{e}$) or oils ($\mathbf{8 b} \mathbf{b}$) with 1.2 mole equilvalents of dry methanol in the presence of 1,3,5-trimethylpyrazole, the 2 -(hydroxy-imino)-D-glycosides 5a-e were obtained in yields, depending on the R^{1} group, ranging from good $(67 \%, 5 \mathrm{c})$ to nearly quantitative $(94 \%, 5 a)$.

Complications came with the increase in scale. Dosage in the addition of NOCl , complete expulsion of the eventual excess of NOCl from the syrupy product, low stationary concentration of the nitrosoenes and the latter's rapid interception, were practical problems, which only after intensive optimization efforts could be overcome in a satisfactory manner. In a prototypical experiment with glycal $\mathbf{4 a}(4 \mathrm{~g})$, protection at $6-\mathrm{N}$ with COCF_{3},
replacement of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by dimethylformamide (DMF) and trimethylpyrazole $\left[\mathrm{p} K_{\mathrm{a}}\left(\mathrm{Me}_{2} \mathrm{SO}\right) \sim 0.8\right]$ by the stronger base 2,4,6-collidine $\left[\mathrm{p} K_{\mathrm{a}}\left(\mathrm{Me}_{2} \mathrm{SO}\right) \sim 4.5\right]^{29}$ and strict timing in the addition of reagent provided, after chromatography, an oily, $\sim 5: 1$ mixture of the hydroxyimino $\alpha-/ \beta$-glycosides $5 \mathbf{a} / 11 \mathrm{a}$ in yields up to 75%. For full spectroscopic characterization (IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, MS) pure samples of compounds 5 a (52%) and 11a (11%) were collected chromatographically, the respective E - and Z-configuration being derived from the NOEs indicated in the formula. The hydrogenative reduction of oximes was described as unproblematic in model cases; ${ }^{30}$ under standard conditions $\left(\mathrm{Pd} / \mathrm{C} / \mathrm{H}_{2}\right)$ concomitant loss of the phenylethyl group (R^{*}) was envisaged. Yet, presumably with participation of the geminal trifluoroacetyl group, catalytic hydrogenation (Pd / C) and several other reduction procedures (inter alia $\left.\mathrm{B}_{2} \mathrm{H}_{6}, \mathrm{TiCl}_{3}-\mathrm{NaBH}_{4}\right)^{31}$ ended in total decomposition. With NaBH_{4} as reducing agent, the $\mathrm{CF}_{3} \mathrm{CO}$ group was preferably lost (49% 5b), with $\mathrm{NaBH}_{4}-\mathrm{MoO}_{3}$ (ethanol, room temp. $)^{32}$ reduction of the imine and elimination of $\mathrm{CF}_{3} \mathrm{CO}$ occurred concurrently ($\mathbf{6 e}$, identified as $\mathbf{6 f}, 41 \%$). $\mathbf{N a C N B H}_{3}$ (acetic acid) turned out to be the reagent of choice in spite of an unexpected complication which could not be avoided. E-oxime 5a was neatly and stereospecifically reduced to the 2hydroxylamine 6a, yet the H -bonded Z-isomer 11a remained intact even under more forcing conditions and thus was lost for the synthesis. Chromatographic separation of compounds 6a/11a-in contrast to that of isomers 5a/11a-was unproblematic, hydrogenolysis of the hydroxylamine 6a to amine $\mathbf{6 b}$ being straightforward. The latter was highly air sensitive and was therefore directly transformed into DNP- or benzyloxy (Z)-protected, spectroscopically characterized compound $6 \mathbf{c c}$ (yellow crystals, m.p. $123^{\circ} \mathrm{C}$) or $\mathbf{6 d}$ (crystals, m.p. $107^{\circ} \mathrm{C}$).
For the decision not to proceed with compounds $\mathbf{5 b}$ and $\mathbf{6 c}$ and to prepare the $2-N, 6-N$ DNP-protected glycosyl donor $7 \mathbf{b}$ along the reaction sequence $\mathbf{6 b} \longrightarrow \mathbf{6 d} \longrightarrow \mathbf{6 g} \longrightarrow \mathbf{6 j} \longrightarrow$ $\mathbf{6 k} \longrightarrow \mathbf{7 a} \longrightarrow \mathbf{7 b}$, which meant temporary protection of the 2 -amino group in compound $\mathbf{6 b}$ as the benzyl carbamate $\mathbf{6 d}$, several prior findings, detailed in the Experimental section, were decisive: (i) Dealkylation (R^{*}) of amide $\mathbf{6 b}$ to give compound $\mathbf{6 h}$ or likewise of $\mathbf{6 e}$ to give free amine $\mathbf{6 j}$ could not be brought about by catalytic hydrogenation, at least not with sufficient selectivity, complexation of the catalyst by the $2-\mathrm{NH}_{2}$ group being a probable cause for this. (ii) Dealkylation (R^{*}) of compound 6f, obtained from 2-amine 6e and DNPF, was quantitative (to give compound $\mathbf{6 k}$) after short exposure to dry $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (TFA) at $60^{\circ} \mathrm{C}$. (iii) Compound 6c reacted again only sluggishly with TFA and provided dealkylated (R^{*}) compound $\mathbf{6 i}$ in only moderate yield (62%) under more vigorous conditions.
In practice, a time-saving upscaled version for the preparation of the intermediate $\mathbf{6 d}$ from glycal $\mathbf{4 a}$ was applied by which the crude reaction mixture of the addition of NOCl to $\mathbf{4 a}$ (mainly 5a/11a) was transformed into compound $\mathbf{6 d}$ without isolation of any intermediate. Crystallization of the crude reaction mixture from methanol afforded pure compound $\mathbf{6 d}$ in 31% yield $[\sim 8 \mathrm{~g}$ from $\mathbf{4 a}(15 \mathrm{~g})]$. Of the three protecting groups in compound $\mathbf{6 d}$ first the COCF_{3} group was removed [as in oxime $5 \mathrm{a}\left(\mathrm{NaBH}_{4}\right)$], in compound 6 g subsequently the R^{*} and Z groups by one-pot catalytic hydrogenation. The reaction of diamine $6 \mathbf{j}$ with DNPF gave the bis-DNP-protected $\mathbf{6 k}\{68 \%$, $\left.[\alpha]_{\mathrm{D}}^{20}+38 \times 10^{-1} \mathrm{deg} \mathrm{cm} \mathrm{g}^{-1}\left(c \quad 0.08, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$. For the hydrolysis $6 \mathbf{k} \longrightarrow \mathbf{7 a}$, addition of nitromethane to the standard mixture of $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$-acetic acid ${ }^{33}$ was essential for solubility reasons; the free sugar 7a was directly transformed into the donor $7 \mathbf{b}$ with acetic anhydride-pyridine (68%), and the latter was isolated in form of yellow crystals (m.p. $94^{\circ} \mathrm{C}$). Compound 7b turned out to be a 5.5:1 mixture of α and β
anomers ($\delta_{1-\mathrm{H}} 6.30$ and $5.67, J_{1.2} 3.5$ and $10.0 \mathrm{~Hz}, \delta_{\mathrm{C}-1} 89.7$ and 96.0 respectively).

The enantiomeric L-donor ent-7b (Scheme 4) was made

Scheme 4 Reagents: see Scheme 2
available by taking the glycal ent-4a through the same sequence of addition of $\mathrm{NOCl}(5.4: 1$ mixture of $\alpha: \beta$ hydroxyiminoglycosides ent-5a), reduction with $\mathrm{NaBH}_{3} \mathrm{CN}$ (ent-6a), catalytic hydrogenation (ent-6b), Z-protection (ent-6d, 59% based on ent6a), treatment with NaBH_{4} (ent-6g), and catalytic reduction (ent-6j) followed by protection with DNP $\left\{68 \%\right.$ ent-6k $[\alpha]_{\mathrm{D}}^{20}$ $\left.-41 \times 10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}\left(c 0.16, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$. The sugar ent-7a was again directly transformed into the yellowish crystalline donor ent-7b (66%, 5:1 anomeric mixture).

D-/L-6-N-Methylpurpurosamine Conors B.-The introduction of the 6 - N -methyl group which distinguishes donors \mathbf{B} from donors \mathbf{A} ($c f$. the sannamycins \mathbf{A}) originally had been envisaged at the stage of the glycals 3. However, as observed for the $6: 1$ mixture of ent $-3 /$ ent -3^{\prime}, the mixture of their $6-N$-Me derivatives ent-12/12', obtained after standard methylation (Scheme 5), was an oil and effective separation by

Scheme 5 Reagents: i, MeI, NaHCO_{3}
fractional crystallization was not possible. Since, on the other hand, the protocol for the subsequent formation of oxime (addition of NOCl) again had been found to be productive only with glycals of a purity attainable by crystallization, this route was not pursued any further.
As an alternative, $6-\mathrm{N}$-methylation was postponed to the stage of the suitably protected methylpurpurosaminides 6 (ent-6). When standard methylation conditions (~ 2.5 mole equivalents MeI- $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH or MeCN) were applied to substrate $\mathbf{6 g}$ (or $\mathbf{6 p}$, Scheme 6) at room temperature, exclusive methylation at $6-\mathrm{N}$ was first observed. Yet, with increasing conversion into compound $\mathbf{6 1}$ (or 6q) the latter's quaternization at $6-\mathrm{N}$ to form the ammonium salt 14 a (or 14b) became unavoidable. After total conversion (in the presence of tertbutylammonium iodide as catalyst) besides $\sim 60 \%$ of the

R
a Z
b BOC

Scheme 6 Reagents: i, Pd-C, H_{2}; ii, DNP-F; iii, $\mathrm{AcOH}-1 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{H}_{2} \mathrm{SO}_{4}(1.3: 1), \mathrm{Ac}_{2} \mathrm{O}$, pyridine; iv, $\mathrm{NaBH}_{4} ; \mathrm{v}$, MeI, $\mathrm{K}_{2} \mathrm{CO}_{3} ; \mathrm{vi}, 2 \mathrm{~mol}$ $\mathrm{dm}^{-3} \mathrm{HCl}$
desired product $61(\mathbf{6 q}), \sim 30 \%$ of the yellowish salts $\mathbf{1 4 a}(\mathbf{1 4 b})$ were present. Intensive efforts to demethylate the salt $\mathbf{1 4 b}$ back to compound $6 \mathbf{q}$ with the help of ethanolamine, ${ }^{34}$ with sulfur ${ }^{35}$ or selenium reagents, ${ }^{36}$ or reductively with $\mathrm{LiAlH}_{4},{ }^{37}$ induced mainly decomposition. In going ahead with substrate 6l, the elimination of the R^{*} - and Z-group could again be conveniently conducted as a one-pot hydrogenation experiment. The
resulting crude diamine $\mathbf{6 m}$ was directly twice protected with DNPF, and compound $6 n$ was crystallized from CHCl_{3} (84%). Prepared analogously to compound $7 \mathbf{b}$, the yellowish solid donor 13a was isolated as a $4: 1 \alpha: \beta$-anomeric mixture [$\delta_{1-\mathrm{H}} 6.15$ and $5.51, J_{1.2} 3.0$ and 6.0 Hz , respectively; m / z (inter alia) $534\left(\mathrm{M}^{+}, 10 \%\right)$].

The non-natural donor ent-13a ($\alpha: \beta$ ratio $5: 1$) was made from substrate ent-6g via the same sequence of group manipulations $\quad(e n t-6 \mathrm{~g} \longrightarrow$ ent $-\mathbf{6 1} \longrightarrow$ ent $-\mathbf{6 m} \longrightarrow e n t-6 \mathrm{n} \longrightarrow$ ent-13a).

When, at a later stage of the project, evidence had accumulated that the phenylethyl group (R^{*}, S^{*}) at $6-\mathrm{N}$ can be cleanly eliminated after the glycosylation step under sufficiently mild conditions, the donors 13b and ent-13b became attractive. Preparation of acetate $\mathbf{1 3 b}$ from compound 6 b was supposed to follow closely that of acetate $\mathbf{1 3 a}(\longrightarrow \mathbf{6 r} \longrightarrow \mathbf{6 s})$. Yet it turned out that the R^{*} group necessitated other protecting measures when the Z -group at $2-\mathrm{N}$ in compound $\mathbf{6 l}$ could not be replaced by the DNP group by the proven hydrogenation procedure. When it was found that various alternative methodologies for Z-deprotection [$\mathrm{BBr}_{3}, \mathrm{AlCl}_{3}, \mathrm{TFA}, \mathrm{Me}_{3} \mathrm{SiI}$ (TMSI)] were not helpful, compound $6 \mathbf{s}$ was approached via the $2-N$-Bocprotected precursors $[\mathbf{6 b} \longrightarrow \mathbf{6 0}(65 \%) \longrightarrow \mathbf{6 p}(78 \%) \longrightarrow \mathbf{6 q}$ $(70 \%) \longrightarrow 6 \mathbf{r} \longrightarrow \mathbf{6 s}(79 \%)]$. Hydrolysis of compound $\mathbf{6 s}$ was performed as with its analogue $\mathbf{6 n}$; the yield of donor $\mathbf{1 3 b}$ was comparable (63%), yet the $\alpha: \beta$-ratio of $9.3: 1$ was significantly higher [$\delta_{1-\mathrm{H}} 6.24$ and $5.50 ; J_{1.2} 3.0$ and 7.0 Hz , $\delta_{\mathrm{C}-1} 90.0$ and 96.8 , respectively; m / z (inter alia) $472\left(\mathrm{M}^{+}\right.$, 100%)].

Enantiomeric donor ent-13b was generated from compound $e n t-6 b$ by the same five-steps sequence (ent-6b $\longrightarrow e n t-60$ \longrightarrow ent $\mathbf{- 6 p} \longrightarrow$ ent- $\mathbf{6 q} \longrightarrow$ ent $-\mathbf{6} \mathbf{r} \longrightarrow$ ent $-\mathbf{6 s} \longrightarrow$ ent $-\mathbf{1 3 b}$), with similar yields for the individual transformations and an $\alpha: \beta$-ratio of $7: 1$ ($J_{1.2} 3.7$ and 8.2 Hz , respectively).

D-/L-2-Azidopurpurosamine C Donors D.-Depending on the kind of protection of the 2-amino group $\left(\mathrm{R}^{3}\right)$, the reactivity of the glycosyl donors of type \mathbf{A} / \mathbf{B} can be profoundly diminished. ${ }^{12.13}$ A proven way to circumvent such limitations is the replacement in compounds \mathbf{A} / \mathbf{B} of the NHR^{3} group by the sterically less demanding, non-participating N_{3} function (C/D). There was the additional advantage that, at the very end of the total syntheses, the catalytic reduction of the N_{3} function could be conveniently combined with the deprotection of other functionalities. Two routes to such 2 -azido sugars have been selected with the intention to make use of enantiomerically pure precursor substrates prepared in this study: Azidonitration of glycals 4 (ent-4) to be discussed in the next section, and diazo transfer ${ }^{38}$ to the 2-amino function in the methyl glycoside $\mathbf{6 b}$ (ent-6b). We had applied this methodology of amine \longrightarrow azide transformation in a different context with great success by making use of in situ-generated trifluoromethanesulfonyl azide $\left(\mathrm{TfN}_{3}\right) .{ }^{39}$ Recent examples in the sugar area are the 2-azido-2deoxyaldols reported by Vasella et al. ${ }^{40}$

In an unoptimized synthetic procedure developed for the 2α -azido-D-glycosyl donor 16b (Scheme 7), air-sensitive amine 6b was introduced as the crude oily material arising from the catalytic reduction of the hydroxylamine $\mathbf{6 a}$. To a methanolic solution of crude 6 b the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathrm{TfN}_{3}(\sim 1.2 \mathrm{~mol}$ equiv.) was added dropwise at room temperature. After total conversion (TLC) and chromatographic work-up of the complex reaction mixture, the azide 15a was isolated in the form of low melting crystals, in a so-far moderate yield of $35-50 \%$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{~N}_{3}\right) 2176$; NMR (inter alia) $J_{1.2} 3.0 \mathrm{~Hz}$; and $m / z(\%)$ (inter alia) $386\left(\mathbf{M}^{+}, 6\right), 355\left(\mathbf{M}^{+}-\mathrm{OCH}_{3}, 10\right), 313\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{OCH}_{3}-\mathrm{N}_{3}, 12\right)$ and $216\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}-\mathrm{N}_{3}-\mathrm{COCF}_{3}\right.$, 21) confirm the structure, particularly the erythro-configuration $[\alpha]_{\mathrm{D}}^{20}+73 \times 10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}\left(c 0.33, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Deprotection

Scheme 7 Reagents: i, TfN_{3}; ii, $\mathrm{NaBH}_{4} ;$ iii, MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$; iv, $\mathrm{AcOH}-1$ $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$ (1.3:1); $\mathrm{v}, \mathrm{Ac}_{2} \mathrm{O}$, pyridine
of compound $15 a$ with NaBH_{4} to give amine $\mathbf{1 5 b}$ was nearly quantitative ($J_{1,2} 3.0 \mathrm{~Hz}$); m/z (\%) (inter alia) $290\left(\mathrm{M}^{+}, 2\right), 259$ $\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}, 3\right), 248\left(\mathrm{M}^{+}-\mathrm{N}_{3}, 36\right)$. Methylation of compound 15 b at $6-\mathrm{N}$ posed the problem already met with compounds 6 g and 6 p . Compromising between conversion and quaternization, a typical experiment ($\sim 1.5 \mathrm{~mol}$ equiv. of MeI) provided methylated compound 15 c in 55% yield [m / z (inter alia) $\left.304\left(\mathrm{M}^{+}, 2 \%\right), 289\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 1\right)\right]$ after separation from compound $\mathbf{1 5 b}$ and quaternary salt 17 . After hydrolysis in 1 $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$-acetic acid- MeNO_{2} solution, the crude oily pyranose 16a consisted of a $\sim 3: 1$ mixture of $\alpha: \beta$-anomers. For characterization, samples were purified by flash chromatography [$\alpha: \delta_{1-\mathrm{H}} 5.29 ; J_{1,2} 3.0 \mathrm{~Hz} ; \beta: \delta_{1-\mathrm{H}} 4.51 ; J_{1.2} 7.0 \mathrm{~Hz} ; m / z$ (\%) (inter alia) $290\left(\mathrm{M}^{+}, 3\right), 275\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 8\right)$ and 248 $\left.\left(M^{+}-N_{3}, 3\right)\right]$. Standard installation of the OAc leaving group provided, after flash chromatographic work-up, an oily 3:1 mixture of $\alpha: \beta$-acetates 16 b (in $\sim 55 \%$ yield) $\left[\alpha: \delta_{1-\mathrm{H}} 6.14 ; J_{1,2}\right.$ $3.0 \mathrm{~Hz} ; \beta: \delta_{1-\mathrm{H}} 4.46 ; J_{1.2} 8.2 \mathrm{~Hz} ; \mathrm{m} / \mathrm{z}(\%)$ (inter alia) $332\left(\mathrm{M}^{+}, 28\right)$, $317\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 8\right)$ and $\left.290\left(\mathrm{M}^{+}-\mathrm{N}_{3}, 5\right)\right]$.
Taking advantage of the experience with compound $\mathbf{1 6 b}$, the L-donor ent-16b was built up from compound ent-6b (Scheme 7) in a strictly analogous fashion $(\longrightarrow e n t-15 \mathbf{a} \longrightarrow e n t-15 \mathbf{b} \longrightarrow$

Fig. 1 Conformational preference in glycal 4a
ent-15c \longrightarrow ent-16a \longrightarrow ent-16b) with similar individual yields and $\alpha: \beta$ ratios.

D-/L-2-epi-Purpurosamine C Donors \mathbf{E} / \mathbf{F}.-Derivatives of rac-2-epi-purpurosamine C (2,6-diamino-2,3,4,6-tetradeoxy-D,L-threo-hexose)-part of inter alia dihydrosisomicin ${ }^{41}$-have been synthesized by Brimacombe et al. exploiting the procedure developed for the rac-purpurosamines C. ${ }^{25}$ Again, with our eyes on both enantiomers of this sort of glycosyl donor, the efficiency and stereochemical outcome of the azidonitration methodology ${ }^{42.43}$ as applied to the glycals 4 (ent-4) were investigated. For several D-hexose glycals, the influence of the orientation and nature of functionalities at C-3 and C-4, of promoter, solvent and temperature, upon the erythro/threo ratio had been analysed. ${ }^{44}$ In the 3,4-dideoxy glycal 4a (ent-4a) such stereodirecting groups were not present; for its highly populated half-chair-like conformation with the substituent being quasi-equatorially oriented (${ }^{1} \mathrm{H}$ NMR, X-ray ${ }^{45}$) a preference for the desired addition of N_{3} from the β-side seemed probable; a high $\alpha: \beta$ ratio, however, was rather questionable (see Fig. 1).

Exposure of compound 4a to cerium(iv) ammonium nitrate (CAN) and sodium azide in MeCN at $-40^{\circ} \mathrm{C}$ (carefully dried components or eventually in the presence of molecular sieves ${ }^{43}$) led nearly quantitatively to a mixture of all four possible azido nitrates $\alpha, \beta-18$ and $\alpha, \beta-19$ (Scheme 8), but the composition,

Scheme 8 Reagents and conditions: i, $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}(\mathrm{CAN}), \mathrm{NaN}_{3}$, $\mathrm{MeCN},-40^{\circ} \mathrm{C}$; ii, $\mathrm{MeOH},-40 \longrightarrow 0{ }^{\circ} \mathrm{C}$
found as $5.3: 1: 1.4: 1$ by integration of the ${ }^{1} \mathrm{H}$ NMR signals, amounted to a $\sim 2.6: 1$ preference for the desired 2 -epi-azides 18. When the nitrates proved relatively stable under the conditions of the extractive work-up (diethyl ether-water), rapid chromatography could be applied for separation and provided the main component $\alpha-18$ in pure form besides a mixture of nitrate $\alpha-19$ with some epimer $\alpha-18$, both fractions as oils. Fully analysed ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra confirmed the stereochemical assignments, particularly for $\alpha-18$, the 1a, $2 \mathrm{a}, 5 \mathrm{e}$ chair-like conformation ($J_{\mathrm{C}-1 . \mathrm{H}} 180.0 \mathrm{~Hz},{ }^{46} \delta_{\mathrm{C}-3} 22.7, \gamma$-effect of

$\left.\begin{array}{lll}\mathrm{R}^{1}=\mathrm{H} & \alpha, \beta-22(\text { epi }) / \alpha, \beta-23 & \beta-25 \\ \mathrm{R}^{1}=\mathrm{DNP} & \beta-24(\text { epi }) & \mathrm{N}, \mathrm{v}\end{array} \quad \right\rvert\, \begin{array}{ll} & \end{array}$

26	a	b
	H Ac	

Scheme 9 Reagents: i, NaBH_{4}; ii, DNP-F, NaHCO_{3}; iii, AcOH ; iv, $\mathrm{AcOH}-1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}(1: 1) ; \mathrm{v}, \mathrm{Ac}_{2} \mathrm{O}$, pyridine, DMAP; vi, $\mathrm{Ac}_{2} \mathrm{O}$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
the axially disposed nitrate substituent). Quenching of the crude mixture of the four azido nitrates with methanol at different temperatures (-20 to $+20^{\circ} \mathrm{C}$) led in each case quantitatively to mixtures ($2.8: 5.8: 2.8: 1$) of the four methyl glycosides $\alpha, \beta-20$ and $\alpha, \beta-21(\alpha-21 \equiv \mathbf{1 5 a})$. Their distinction was based on the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analyses of enriched mixtures and of the prevailing pure 2 -epi-isomer $\beta-20$ as the result of rapid chromatography. After amidic cleavage $\left(\mathrm{NaBH}_{4}\right)$ from the mixture of the four amines $\alpha, \beta-22$ and $\alpha, \beta-23(92 \%)$ the two main components $\beta-22\left[42 \%, m / z(\%)\right.$ (inter alia) $290\left(M^{+}, 10\right)$, $\left.275\left(M^{+}-\mathrm{CH}_{3}, 54\right) ; \delta_{1-\mathrm{H}} 4.43 ; J_{1,2} 1.5 \mathrm{~Hz}\right]$ and $\alpha-23 \equiv \mathbf{1 5 b}$ $\left(37 \%, \delta_{1-\mathrm{H}} 4.70 ; J_{1.2} 3.0 \mathrm{~Hz}\right)$ were separated by column chromatography. Protection of oily compound $\beta-22$ as DNP derivative $\beta-24$, a yellowish foamy material, was straightforward $\left[96 \%, m / z\right.$ (inter alia) $456\left(M^{+}, 1\right), 441\left(M^{+}-\mathrm{CH}_{3}, 1\right)$; $\delta_{1-\mathrm{H}} 4.22, J_{1.2} 1.5 \mathrm{~Hz} ; \delta_{\mathrm{C}-1} 102.3, \delta_{\mathrm{C}-2} 57.0$] (Scheme 9). Pure 2-epi-threo-isomer β-24, was cleanly dealkylated by keeping it in solution in acetic acid at $85^{\circ} \mathrm{C}$ for 4 h , whereupon compound β -$25\left(\delta_{1-\mathrm{H}} 4.58, J_{1,2} 1.5 \mathrm{~Hz}\right.$) was isolated after crystallization from ethyl acetate as yellow needles $\left\{92 \%,[\alpha]_{\mathrm{D}}^{20}+93\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$. If pure compound $\beta-\mathbf{2 5}$, as a dilute solution, was exposed to hydrolysis ($1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$-acetic acid- MeNO_{2}) and workup conditions, the yellowish pyranose 26a was obtained in up to 85% and characterized as a $\sim 1.7: 1$ anomeric mixture $\left[\delta_{1-\mathrm{H}} 5.22\right.$ (s) and $4.94(J 1.5 \mathrm{~Hz}) ; \delta_{\mathrm{C}-1} 95.0$ and $91.9 ; m / z$ (inter alia) 338 $\left(M^{+}, 36\right), 196(82)$ and $\left.179(100)\right]$. In acetic anhydride-pyridine, transformation into donor 26b was practically quantitative $\left[\alpha: \beta\right.$ ratio $\sim 1.7: 1, m / z$ (inter alia) $380\left(\mathrm{M}^{+}, 100\right) ; \delta_{1-\mathrm{H}} 6.08$ (s) and $5.84(\mathrm{~d}, J 1.5 \mathrm{~Hz}) ; \delta_{\mathrm{C}-1} 93.9$ and 91.3 , respectively]. It should be added that in this case the fate of compound $\beta-25$ under standard hydrolysis conditions ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}{ }^{-}$ acetic anhydride) could be clarified to the extent that the openchain tetradeoxy-D-threo-hexose derivative 27 was the only isolable monomeric product $(38 \%){ }^{47}$

By exploitation of the procedure leading from glycal 4a via azides $\alpha, \beta-20$ and $\beta-24$ to the donor 26 b , the differently $6-\mathrm{N}$ protected donor ent-29b was approached with ent-4a as starting material (Scheme 10). The latter's reaction with CAN-methanol yielded a mixture of the four possible methyl glycosides ent- $\alpha, \beta-20$ and ent- $\alpha, \beta-21$ in 91% yield. After treatment of this

Scheme 10 Reagents: i, $\mathrm{CAN}, \mathrm{NaN}_{3}$; ii, MeOH ; iii, NaBH_{4}; iv, MeI, $\mathrm{K}_{2} \mathrm{CO}_{3} ; \mathrm{v}, \mathrm{AcOH}-1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$ (1:1); vi, $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, DMAP
mixture with NaBH_{4} the composition of 2.8:5.9:1:1 (${ }^{1} \mathrm{H}$ NMR spectroscopy) attested to a somewhat reduced side differentiation of the CAN reaction. Chromatographic separation yielded pure samples of ent- $\alpha-23(13 \%)$, ent- $\beta-22(33 \%)$, and ent-$\alpha-22(15 \%)$ besides a mixture of ent- $\alpha-22 /$ ent $-\beta-22$ and ent $-\beta-23$ (20%). Methylation of pure free amine ent $-\beta-22$ as described for compound 6 g gave crystalline ent- β-28 (65% yield). Methylation of ent $-\alpha-22$ gave oily ent $-\alpha-28$ (62% yield). Through hydrolysis with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$-acetic acid- MeNO_{2} the pyranose ent-29a was obtained in an $\alpha: \beta$ ratio of $2.0: 1$, and in a yield varying between 60 and 80%. The transformation into donor ent-29b, an oily $\alpha: \beta$ mixture of $2.0: 1$ was again nearly quantitative $\left[\delta_{1-\mathrm{H}} 5.98\right.$ and $5.76, J_{1.2}<1$ and $1.8 \mathrm{~Hz}, \delta_{\mathrm{C}-1} 91.9$ and 94.1, respectively; m / z (inter alia) $332\left(\mathrm{M}^{+}, 20 \%\right)$ and 317 $\left.\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)\right]$.

Comments.-A main feature of the protocols presented in this paper for the synthesis of various purpurosamine-type glycosyl donors is their applicability to both enantiomers. There are obvious drawbacks: The relatively expensive chiral 'auxiliaries' become part of the structures and are lost to a greater extent in the form of the non-crystallizable diastereoisomers (4^{\prime} a, ent-4'a), at least for the time being. This limitation was acceptable as long as only small quantities of aminoglycosides as the ultimate synthetic targets were needed for biological tests. Still, there are good reasons, particularly in the case of the azido donors $\mathbf{C - F}$, to look for synthetic alternatives. ${ }^{48}$ Separations through biocatalytic methodologies as successfully applied in the aglyca area, ${ }^{10.11}$ are being explored at various stages. Hydrolysis-amidation experiments involving various racemic esters and amides derived from rac-1 are indeed promising. ${ }^{49} \dagger$ Present efforts ${ }^{51}$ are also directed to the resolution of racemic glycals of type 4 via the glycosides prepared with enantiopure glycosyl acceptors. ${ }^{52}$

Experimental

M.p.s were measured on a Monoskop IV (Fa. Bock) and are uncorrected. Elemental analyses were performed by Analytische Abteilung des Chemischen Laboratoriums Freiburg i.Br. IR spectra were measured with a Philips 9706, and ${ }^{1} \mathrm{H}$ NMR spectra with a Bruker AC 250 , AM 400 spectrometer (250 MHz , when not specified otherwise; values marked with an asterisk * are interchangeable); J values are in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker AM 400 spectrometer. Mass spectra were run on a Finnigan MAT 44 S spectrometer, EI 70 eV , if not specified differently. Optical rotations were measured on a PE

[^1]241 polarimeter; specific rotation values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. TLC was performed on silica gel $60 \mathrm{~F}-254$ (E . Merck, Darmstadt). The silica gel used for column chromatography was MN 60 (Macherey-Nagel, Düren). The purity of the oily compounds has generally been confirmed by TLC.

General Procedure for Acetylation.-An alcohol (1.00 mmol) was dissolved in a mixture of acetic anhydride ($1 \mathrm{~cm}^{3}$) and pyridine ($1 \mathrm{~cm}^{3}$) and the solution was kept at room temperature for 3 h with a catalytic amount of 4 -(dimethylamino)pyridine (DMAP). After total conversion (TLC control), the mixture was evaporated and the residue was chromatographed.
(2S)/(2R)-2-[(1R)-Phenylethylaminomethy $]-3,4-$ dihydro- $2 \mathrm{H}-$ pyran $3 / \mathbf{3}^{\prime}$.-To a solution of ($1 R$)-phenylethylamine $(99.4 \mathrm{~g}$, $0.82 \mathrm{~mol})$ in dry ethanol $\left(200 \mathrm{~cm}^{3}\right)$ was added at $0^{\circ} \mathrm{C}$ dropwise within 2.5 h racemic acrolein dimer rac-1 ($95.5 \mathrm{~g}, 0.85 \mathrm{~mol}$). After the mixture had been stirred at room temperature for 15 h there was total conversion (TLC, R_{f} imine 0.56 , ethyl acetate). To the solution was added in portions $\mathrm{NaBH}_{4}(12.8 \mathrm{~g}, 0.32$ mol); after 3 h (total conversion, TLC, $R_{\mathrm{f}} \mathbf{3 0 . 3 6}, R_{\mathrm{f}} \mathbf{3}^{\prime} 0.44$, ethyl acetate), excess of NaBH_{4} was destroyed with acetic acid (pH 7). The reaction mixture was evaporated, and the residue was dissolved in water and extracted with diethyl ether. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, the oily residue was distilled $\left(95^{\circ} \mathrm{C}, 10^{2} \mathrm{~Pa}\right.$) to give compounds $3 / 3^{\prime}(135.5 \mathrm{~g}, 76 \%)$ as an oil.

Separation of Diastereoisomers 3/3'- To a solution of compounds $3 / 3^{\prime}(135.5 \mathrm{~g}, 0.62 \mathrm{~mol})$ in boiling, dry acetonitrile ($1000 \mathrm{~cm}^{3}$) was added a solution 3,5-dinitrobenzoic acid (65.7 g , 0.31 mol) in boiling, dry acetonitrile ($1000 \mathrm{~cm}^{3}$). The mixture was cooled to $5^{\circ} \mathrm{C}$ within 3 h . The crystalline precipitate was collected, treated with diethyl ether ($350 \mathrm{~cm}^{3}$) and cold aq. 0.5 $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(700 \mathrm{~cm}^{3}\right)$ was added. After extraction of the aqueous phase ($\mathrm{Et}_{2} \mathrm{O}$), the combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give compounds $\mathbf{3 / 3} \sim 6: 1$ (57.4 g, 76%, TLC, ethyl acetate) as an oil. For analytical purposes, a small amount (1.0 g) was chromatographed (silica gel, deactivated with triethylamine, ethyl acetate). Compound $3 \mathrm{H}^{+}$ 3,5 -dinitrobenzoate, m.p. $185^{\circ} \mathrm{C}$ (from MeCN) (Found: C, 58.6 ; $\mathrm{H}, 5.0 ; \mathrm{N}, 9.2 . \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires C, 58.74; $\mathrm{H}, 5.40 ; \mathrm{N}$, 9.87%); isomer $3^{\prime} \mathrm{H}^{+} 3,5$-dinitrobenzoate had m.p. $155^{\circ} \mathrm{C}$ (from MeCN).
Compound 3. $R_{\mathrm{f}} 0.36$ (ethyl acetate); $[\alpha]_{\mathrm{D}}^{20}+60\left(c 2.0, \mathrm{C}_{6} \mathrm{H}_{6}\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3334 \mathrm{w}(\mathrm{NH})$ and $3040 \mathrm{w}(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ 7.25 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 6.32 ($1 \mathrm{H}, \mathrm{dt}, 6-\mathrm{H}$), 4.63 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 3.84 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), $3.75\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime \prime}-\mathrm{H}\right), 2.55 / 2.46\left(2 \mathrm{H}, \mathrm{dd}, 1^{\prime}-\mathrm{H}_{2}\right), 2.00$ ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 1.77/1.62 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$) and $1.27\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime \prime}-\mathrm{H}_{3}\right)$; $J_{2.3 \alpha} 3, J_{2.3 \beta} 10.8, J_{3 \alpha .4 \alpha} 6, J_{3 \text { ß.4 }} 10.5, J_{4 \alpha .6} 1.2, J_{4 \text { в. } 6} 1.2 . J_{5.6} 6$, $J_{2.1^{\prime} \mathrm{a}} 4.5, J_{2.1^{\prime} \mathrm{b}} 6.8$ and $J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}} 12 ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 144.4(\mathrm{C}-6)$, 129.3 (C-m), 127.5 (C-p), 118.3 (C-o), 101.5 (C-5), 75.5 (C-2), 58.8 (C-1"), 52.4 (C-1'), 26.5 (C-4), 24.9 (C-3) and 20.3 (C-2").

Compound 3'. $R_{\mathrm{f}} 0.44$ (ethyl acetate); $[\alpha]_{\mathrm{D}}^{20}+2\left(c 2.0, \mathrm{C}_{6} \mathrm{H}_{6}\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3334 \mathrm{w}(\mathrm{NH})$ and $3020 \mathrm{w}(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ 7.28 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 6.34 ($1 \mathrm{H}, \mathrm{dt}, 6-\mathrm{H}$), 4.64 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 3.81 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), $3.74\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime \prime}-\mathrm{H}\right)$, 2.59/2.39 ($2 \mathrm{H}, \mathrm{dd}, 1^{\prime}-\mathrm{H}_{2}$), $2.00\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 1.72 / 1.52\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$ and $1.27(3 \mathrm{H}, \mathrm{d}$, $\left.2^{\prime \prime}-\mathrm{H}_{3}\right) ; J_{2.3 \alpha} 2.3, J_{2.3 \beta} 9.3, J_{3 \alpha .3 \beta} 15, J_{3 \beta, 4 \alpha} 10.5, J_{4 \alpha .6} 1.3, J_{4 \beta .6}$ $1.3, J_{5.6} 6, J_{2.1^{\prime} \mathrm{a}} 4.5, J_{2.1^{\prime} \mathrm{b}} 6.8$ and $J_{1^{\prime} \mathrm{a} .1^{\prime} \mathrm{b}} 12 ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 144.3$ (C-6), 129.3 (C-m), 127.6 (C-p), 118.3 (C-o), 101.5 (C-5), 75.8 (C-2), 59.1 (C-1"), $52.6\left(\mathrm{C}-1^{\prime}\right), 26.6(\mathrm{C}-4), 25.0(\mathrm{C}-3)$ and 20.1 (C-2"); m / z (inter alia) $217\left(\mathrm{M}^{+}, 8 \%\right)$ and $202\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 4\right)$.
(2R)/(2S)-2-[(1S)-Phenylethylaminomethyl]-3,4-dihydro-2Hpyran ent-3/ent- $\mathbf{3}^{\prime}$.-Generation of ent-3/ent- $\mathbf{3}^{\prime}$ with rac-1 and ($1 S$)-phenylethylamine and separation as described above for
compounds $\mathbf{3} / \mathbf{3}^{\prime}$ gave compounds ent-3/ent-3' $\sim 6: 1(58.3 \mathrm{~g}$, 76%, TLC, ethyl acetate). Compound ent- $3 \mathrm{H}^{+} 3,5$-dinitrobenzoate had m.p. $182^{\circ} \mathrm{C}$ (from MeCN); compound ent $-\mathbf{3}^{\prime} \mathrm{H}^{+}$3,5dinitrobenzoate had m.p. $161^{\circ} \mathrm{C}$ (from MeCN).
ent-3. $[\alpha]_{\mathrm{D}}^{20}-88(c 0.01, \mathrm{MeCN})$) ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of compound 3 .
ent-3'. $[\alpha]_{\mathrm{D}}^{20}+15(c 0.03, \mathrm{MeCN}) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of compound $\mathbf{3}^{\prime}$.
(2S)/(2R)-2-\{ $\mathrm{N}-$ Trifluoroacetyl- $\mathrm{N}-[(\mathrm{R})$-phenylethy]aminomethyl $\}$-3,4-dihydro-2H-pyran 4a/4'a.-To a solution of the 6:1 mixture of amines $3 / 3^{\prime}(40.3 \mathrm{~g}, 0.19 \mathrm{~mol})$ in a dry mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(360 \mathrm{~cm}^{3}\right)$ and pyridine ($75.1 \mathrm{~g}, 0.95 \mathrm{~mol}$) was added dropwise at $0^{\circ} \mathrm{C}$ during 30 min trifluoroacetic anhydride (TFAA) ($42.0 \mathrm{~g}, 0.20 \mathrm{~mol}$). After the mixture had been stirred for 1 h [total conversion, TLC, $R_{\mathrm{f}} 4 \mathrm{a} 0.40, R_{\mathrm{f}} 4$ 'a 0.32 light petroleum $\left(60-70^{\circ} \mathrm{C}\right.$)-diethyl ether ($\left.\left.5: 1\right)\right]$, saturated aq. NaHCO_{3} ($300 \mathrm{~cm}^{3}$) was added. The aqueous phase was thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried $\left(\mathrm{MgSO}_{4}\right)$, and the organic phase was evaporated. Fractional crystallization from $\mathrm{MeOH}\left(150 \mathrm{~cm}^{3}\right)$ at room temperature gave pure amide 4 a (average $46.0 \mathrm{~g}, 77 \%$) as crystals. Evaporation of the mother liquor gave an oily residue consisting of a $\sim 1: 9$ mixture of isomers $4 a$ and $\mathbf{4 ' a}^{\prime} \mathbf{a}$, which could not be crystallized from a large number of solvents (light petroleum, ethanol, CCl_{4}) to afford pure compound 4^{\prime} a. For analytical purposes pure compound 4'a was obtained by chromatography [light petroleum ($60-$ $70^{\circ} \mathrm{C}$)-diethyl ether (5:1)] as an oil.

Practical Version.-Treatment of a $1: 1$ mixture of compounds $\mathbf{3} / \mathbf{3}^{\prime}(107.8 \mathrm{~g}, 0.5 \mathrm{~mol})$ with pyridine ($200 \mathrm{~cm}^{3}, 0.95 \mathrm{~mol}$) and TFAA ($70 \mathrm{~cm}^{3}, 0.51 \mathrm{~mol}$) as described above gave, after fractional crystallization from $\mathrm{MeOH}\left(200 \mathrm{~cm}^{3}\right)$ at room temperature, pure compound 4a (average $36.5 \mathrm{~g}, 45 \%$) as crystals. Fractional crystallization (three times) of the mother liquor from $\mathrm{MeOH}\left(100 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ gave a total yield of pure compound 4 a (average $49.4 \mathrm{~g}, 63 \%$) as crystals. Evaporation of the mother liquor gave an oily residue consisting of a $\sim 1: 2.5$ mixture of isomers 4a and 4'a, which could not be crystallized.
Compound 4a had m.p. $68^{\circ} \mathrm{C}(\mathrm{MeOH})$ (Found: C, $61.2 ; \mathrm{H}$, 5.8; $\mathrm{N}, 4.6 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2}$ requires $\mathrm{C}, 61.34 ; \mathrm{H}, 5.79 ; \mathrm{N}$, $4.47 \%) ;[\alpha]_{\mathrm{D}}^{20}+99\left(c 0.99, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2986 \mathrm{w}$ (CH) and $1678 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.33(1$ $\mathrm{H}, \mathrm{dt}, 6-\mathrm{H}), 5.31\left(1 \mathrm{H}, \mathrm{q}, \mathrm{l}^{\prime \prime}-\mathrm{H}\right), 4.64(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.10(1 \mathrm{H}$, dddd, $2-\mathrm{H}$), $3.31 / 2.82\left(2 \mathrm{H}, \mathrm{dd}, 1^{\prime}-\mathrm{H}_{2}\right)$, $2.00\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$, 1.79/1.42 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}$), $1.73\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime \prime}-\mathrm{H}_{3}\right) ; J_{2.3 \alpha} 2.8, J_{2.3 \mathrm{~B}}$ $11.3, J_{3 \alpha .4 \alpha} 6, J_{4 \alpha .6} 1.4, J_{4 \beta .6} 1.4, J_{5,6} 6, J_{2.1^{\prime} \mathrm{a}} 2.5, J_{2.1^{\prime} \mathrm{b}} 8.3$ and $J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}} 14.8 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 157.7(\mathrm{C}=\mathrm{O}), 143.0(\mathrm{C}-6), 138.0(\mathrm{C}-$ ipso), 128.9 (C-m), 128.3 (C-p), $127.3(\mathrm{C}-o), 118.5\left(\mathrm{CF}_{3}\right), 100.7$ (C-5), 71.7 (C-2), 55.5 (C-1"), 47.2 (C-1'), 25.9 (C-4), 19.3 (C-3) and $17.6\left(\mathrm{C}-2^{\prime \prime}\right) ; J\left(\mathrm{CF}_{3}, \mathrm{~F}\right) 284.75$.
Compound 4'a had $[\alpha]_{\mathrm{D}}^{20}-4\left(c 1.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 2980 \mathrm{w}(\mathrm{CH})$ and $1686 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.40(5 \mathrm{H}, \mathrm{m}$, ArH), 5.95 ($1 \mathrm{H}, \mathrm{dt}, 6-\mathrm{H}), 5.40\left(1 \mathrm{H}, \mathrm{q}, \mathrm{l}^{\prime \prime}-\mathrm{H}\right), 4.65(1 \mathrm{H}, \mathrm{m}, 5-$ H), $3.60(1 \mathrm{H}$, dddd, $2-\mathrm{H}), 3.37 / 3.24\left(2 \mathrm{H}, \mathrm{dd}, 1^{\prime}-\mathrm{H}_{2}\right), 1.90(2 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{H}_{2}\right), 1.75 / 1.50\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$ and $1.68\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime \prime}-\mathrm{H}_{3}\right)$; $J_{4 \times .6} 1.5, J_{4 \mathrm{p} .6} 1.5, J_{5.6} 6, J_{2.1^{\prime} \mathrm{a}} 3.5, J_{2.1^{\prime} \mathrm{b}} 6.8$ and $J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}} 12$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 143.0(\mathrm{C}-6), 138.0(\mathrm{C}-i p s o), 128.7(\mathrm{C}-m), 128.5(\mathrm{C}-p)$, 127.8 ($\mathrm{C}-\mathrm{o}$), 118.5 (CF_{3}), 100.3 (C-5), 72.2 (C-2), 55.3 (C-1"), 47.2 ($\mathrm{C}-1^{\prime}$), 25.6 (C-4), 19.1 (C-3) and $17.6\left(\mathrm{C}-2^{\prime \prime}\right) ; J\left(\mathrm{CF}_{3}, \mathrm{~F}\right)$ 286.76.
(2R)/(2S)-2-\{ N -Trifluoroacetyl- $\mathrm{N}-[(1 \mathrm{~S})$-phenylethyl $]$ aminomethyl $\}$-3,4-dihydro-2H-pyran ent-4a/ent-4'a.-Generation of isomers ent-4a/ent-4'a as described for isomers $\mathbf{3} / \mathbf{3}^{\prime}$ gave ent-4a ($51.0 \mathrm{~g}, 86 \%$) as crystals and ent-4'a as an oil.

Compound ent-4a had m.p. $68^{\circ} \mathrm{C}$ (from MeOH) (Found: C , $61.1 ; \mathrm{H}, 5.75 ; \mathrm{N}, 4.45 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2}$ requires $\mathrm{C}, 61.34 ; \mathrm{H}, 5.79$; $\mathrm{N}, 4.47 \%) ;[\alpha]_{\mathrm{D}}^{20}-98\left(c 0.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer $4 \mathbf{4}$.

Compound ent-4'a had $[\alpha]_{\mathrm{D}}^{20}+6\left(c 0.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer 4'a.

Methyl 2,3,4,6-Tetradeoxy-2-hydroxyimino-6-\{trifluoro-

 acetyl-[(1R)-phenylethyl]amino $\}-\alpha / \beta$-D-glycero-hexopyranoside 5a/11a ($\alpha: \beta 5: 1$).-Compound $\mathbf{4 a}(4.00 \mathrm{~g}, 12.80 \mathrm{mmol})$, dried in vacuo for 12 h , was placed in a flame-dried, $250 \mathrm{~cm}^{3}$ flask fitted with gas inlet tube, Teflon valve and serum cap. The apparatus was evacuated three times via the Teflon valve and was vented with N_{2}. Against a stream of N_{2}, compound 4a was dissolved in stirred $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(70 \mathrm{~cm}^{3}\right.$, freshly distilled and filtered through basic $\mathrm{Al}_{2} \mathrm{O}_{3}$, activity I). The solution was cooled to $-78^{\circ} \mathrm{C}$. With introduction of NOCl (Fluka, A6), the colourless solution became blue and then green. When the green colour persisted after intensive stirring of the mixture, introduction of NOCl was stopped. The reaction mixture was concentrated to dryness ($T_{\max } 25^{\circ} \mathrm{C}$) to give a colourless solid residue. A small amount (20 mg) was immediately analysed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy as pure diimine derivative 9a; after 6 h , compound 9 a had almost totally rearranged (95%).The solid residue 9a was cooled to $-78^{\circ} \mathrm{C}$ and was dissolved in dry DMF $\left(20 \mathrm{~cm}^{3}\right)$. At $-40^{\circ} \mathrm{C}$ dry methanol $\left(5.3 \mathrm{~cm}^{3}, 140\right.$ mmol) was added and after 5 min dry 2,4,6-collidine (2,4,6trimethylpyridine) $\left(1.7 \mathrm{~cm}^{3}, 12.80 \mathrm{mmol}\right)$. The reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 10 min and then at room temperature for 40 min . Concentration to dryness and chromatography of the oily residue $\left\{R_{\mathrm{f}} \mathbf{5 a} 0.39, R_{\mathrm{f}} \mathbf{1 1 a} 0.30\right.$ [cyclohexane-ethyl acetate ($2: 1$)] \} gave isomers $5 \mathrm{a}(2.50 \mathrm{~g}, 52 \%$) and $11 \mathrm{a}(500 \mathrm{mg}$, 10%) as oils.

Compound 5a: (Found: $\mathrm{C}, 54.4 ; \mathrm{H}, 5.8 ; \mathrm{N}, 7.0 . \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C. $54.54 ; \mathrm{H}, 5.65 ; \mathrm{N}, 7.48 \%$) $[\alpha]_{\mathrm{D}}^{20}+20\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400 \mathrm{w}(\mathrm{OH}), 2980 \mathrm{w}(\mathrm{CH}), 1725 \mathrm{~s}(\mathrm{C}=\mathrm{N})$ and $1672 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.20(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.30(5 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 5.30\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}\right), 4.83(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 4.43(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 3.34(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.25 / 2.71\left(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}\right), 3.15 / 2.15(2$ $\mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.74\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}\right)$ and $1.69 / 1.21\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right) ; J_{3 \alpha .3 \beta}$ $15, J_{3 \alpha .4 \alpha} 6 . J_{3 \alpha .4 \beta} 15, J_{3 \beta .4 \alpha} 6, J_{3 \beta .4 \beta} 5, J_{4 \alpha, 4 \beta} 12, J_{4 \alpha, 5} 3, J_{4 \beta, 5} 12$, $J_{5.6 \mathrm{a}} 8$ and $J_{6 \mathrm{a}, 6 \mathrm{~b}} 14 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 157.4(\mathrm{C}=\mathrm{O}), 154.3(\mathrm{C}-2), 128.8$ (C-m), $128.3(\mathrm{C}-p), 127.1(\mathrm{C}-o), 116.7\left(\mathrm{CF}_{3}\right), 98.3(\mathrm{C}-1), 65.3(\mathrm{C}-$ 5), 55.4 (C-1'), 54.4 (OMe), 49.0 (C-6), 28.3 (C-4), 18.6 (C-3) and $17.7\left(\mathrm{C}-2^{\prime}\right) ; J\left(\mathrm{CF}_{3}, \mathrm{~F}\right) 287.76$.

Compound 11a: $[\alpha]_{\mathrm{D}}^{20}+33\left(c 0.76, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3380w (OH), 2980w $(\mathrm{CH}), 1760 \mathrm{~s}(\mathrm{C}=\mathrm{N})$ and $1678 \mathrm{~s}(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.50(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.20(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $4.85(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 4.80\left(1 \mathrm{H}, \mathrm{q}, \mathrm{l}^{\prime}-\mathrm{H}\right), 4.00(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $3.49(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.35 / 2.90\left(2 \mathrm{H}\right.$, dd, $\left.6-\mathrm{H}_{2}\right), 2.90(1 \mathrm{H}, \mathrm{m}$, $3 \alpha-\mathrm{H}), 2.20(1 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H}), 1.75\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right)$ and $1.75 / 1.50$ $\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right) ; J_{3 \alpha .3 \beta} 15, J_{3 \alpha .4 \alpha} 5, J_{3 \alpha, 4 \beta} 15, J_{3 \beta .4 \alpha} 6.5, J_{3_{\beta .4 \beta}}$ $5, J_{4 \alpha .4 \mathrm{\beta}} 15 . J_{4 \alpha, 5} 6, J_{4 \beta, 5} 12, J_{5.6 \mathrm{a}} 3, J_{5.6 \mathrm{~b}} 7.5$ and $J_{6 \mathrm{a} .6 \mathrm{~b}} 14$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 157.8(\mathrm{C}=\mathrm{O}), 153.4(\mathrm{C}-2), 128.9(\mathrm{C}-m), 128.4(\mathrm{C}-p)$, 127.2 ($\mathrm{C}-o$), $115.4\left(\mathrm{CF}_{3}\right), 99.3$ ($\mathrm{C}-1$), 71.7 (C-5), 55.9 ($\left.\mathrm{C}-1^{\prime}\right)$, 55.5 (OMe), 49.9 (C-6), 25.6 (C-4), 20.4 (C-3) and 18.04 (C$\left.2^{\prime}\right) ; J\left(\mathrm{CF}_{3}, \mathrm{~F}\right) 288.77 ; m / z$ (inter alia) $374\left(\mathrm{M}^{+}, 10 \%\right)$ and 343 $\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}, 14\right)$.

Methyl 2,3,4,6-Tetradeoxy-2-hydroxyimino-6-\{trifluoro-acetyl-[(1S)-phenylethyl]amino $\}-\beta / \alpha-\mathrm{L}$-glycero-hexopyranoside ent-5a/ent-11a ($\alpha: \beta 5.4: 1$).-Treatment of compound ent-4a as described above for compound 4a yielded products ent-5a (2.85 $\mathrm{g}, 60 \%$) and ent-11a ($510 \mathrm{mg}, 11 \%$) as oils.

Compound ent-5a: $[\alpha]_{\mathrm{D}}^{20}-23\left(c 0.04, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of compound 5a.

Compound ent-11a: $[\alpha]_{\mathrm{D}}^{20}-43\left(c 0.09, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of compound $11 \mathbf{1}$.

Methyl 2,3,4,6-Tetradeoxy-2-hydroxyimino-6-[(1R)-phenyl-ethylamino]- α-D-glycero-hexopyranoside $\mathbf{5 b}$.-To a solution of amide $5 \mathrm{a}(100 \mathrm{mg}, 0.27 \mathrm{mmol})$ in dry ethanol $\left(5 \mathrm{~cm}^{3}\right)$ was added in portions $\mathrm{NaBH}_{4}(200 \mathrm{mg}, 5.30 \mathrm{mmol})$ at room temperature within 3.5 h (total conversion, TLC, $\boldsymbol{R}_{\mathrm{f}} \mathbf{5 b} 0.57$, ethyl acetate). Excess of NaBH_{4} was destroyed with acetic acid (pH 7), and the mixture was evaporated. After addition of water, the mixture was extracted with ethyl acetate, and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The oily residue was chromatographed (ethyl acetate) to give title compound $5 \mathbf{5}(36 \mathrm{mg}$, 49%) as an oil; $[\alpha]_{\mathrm{D}}^{20}+15\left(c \quad 0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3338s (OH) and $2922 \mathrm{w}(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.30(5 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 4.85(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 4.20(1 \mathrm{H}$, dddd, $5-\mathrm{H}), 3.80(1 \mathrm{H}, \mathrm{q}$, $\left.1^{\prime}-\mathrm{H}\right), 3.40(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.20 / 2.20\left(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}\right), 3.15 / 2.50(2$ $\left.\mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 1.70 / 1.50(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$ and $1.30\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right)$; $J_{3 \alpha .3 \beta} 15, J_{3 \alpha .4 \alpha} 6, J_{3 \alpha .4 \beta} 13, J_{3 \beta .4 \alpha} 5.5, J_{4 \alpha .4 \beta} 15, J_{4 \alpha .5} 3, J_{4 \beta .5}$ $11.5, J_{5.6 \mathrm{a}} 3, J_{5.6 \mathrm{~b}} 8$ and $J_{6 \mathrm{a} .6 \mathrm{~b}} 12 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 154.0(\mathrm{C}-2), 128.6$ (C-m), 128.2 (C-p), 126.6 (C-o), 98.8 (C-1), $68.0(\mathrm{C}-5), 58.1$ (C$\left.1^{\prime}\right), 54.4(\mathrm{OMe}), 51.7(\mathrm{C}-6), 28.1(\mathrm{C}-4)$ and 18.7 (C-2'); m/z (inter alia) $278\left(\mathrm{M}^{+}, 4 \%\right), 246\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}, 4\right)$ and $231\left(\mathrm{M}^{+}-\right.$ $\mathrm{OCH}_{3}-\mathrm{OH}, 2$).

Methyl 2-Benzyloxycarbonylamino-2,3,4,6-tetradeoxy-6-\{tri-fluoroacetyl-[(1R)-phenylethyl]amino \}- α-D-erythro-hexopyranoside $\mathbf{6 d}$.-To a solution of oxime $5 \mathbf{5 a}(1.46 \mathrm{~g}, 3.90 \mathrm{mmol})$ in acetic acid ($15 \mathrm{~cm}^{3}$) was added, at $15^{\circ} \mathrm{C}, \mathrm{NaBH}_{3} \mathrm{CN}(500 \mathrm{mg}$, 8.00 mmol). After 1.5 h (total conversion, TLC, $R_{\mathrm{f}} \mathbf{6 a} 0.39$, ethyl acetate), the mixture was neutralized with NaHCO_{3}, and extracted with diethyl ether, and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The oily residue was filtered (silica gel, ethyl acetate) to give compound $\mathbf{6 a}(1.35 \mathrm{~g})$.

The crude oily hydroxylamine $\mathbf{6 a}$ was dissolved in acetic acid $\left(100 \mathrm{~cm}^{3}\right)$ and hydrogenated in the presence of $10 \% \mathrm{Pd}-\mathrm{C}(1.00$ g) at room temperature for $3 \mathrm{~h}\left(10^{5} \mathrm{~Pa}\right)$. The catalyst was removed by filtration, and washed with hot acetic acid; the combined organic phases were evaporated to give free amine $\mathbf{6 b}$ $(1.10 \mathrm{~g})$ as a crude oil.

This was dissolved in acetone-water $(1: 1)\left(50 \mathrm{~cm}^{3}\right)$ and solid $\mathrm{NaHCO}_{3}(4.00 \mathrm{~g}, 48.00 \mathrm{mmol})$ and $\mathrm{Z}-\mathrm{Cl}(520 \mathrm{mg}, 3.10 \mathrm{mmol})$ were added at room temperature. After 2 h the mixture was evaporated, the residue was diluted with water, the water phase was extracted with ethyl acetate, and the organic phase was dried (MgSO_{4}). Evaporation and chromatography ($\boldsymbol{R}_{\mathrm{f}} \mathbf{6 d} 0.64$, ethyl acetate) gave title compound $\mathbf{6 d}(1.23 \mathrm{~g}, 64 \%)$ as crystals, m.p. $107^{\circ} \mathrm{C}$ (from MeOH).

Short Path to Compound 6d.-Reaction of compound $4 \mathbf{4}$ $(15.0 \mathrm{~g}, 48.0 \mathrm{mmol})$ with NOCl as described above, careful extraction of the residue with ethyl acetate $\left(200 \mathrm{~cm}^{3}\right)$ and evaporation gave isomeric mixture 5a/11a as a crude oil. This was treated with $\mathrm{NaBH}_{3} \mathrm{CN}(4.20 \mathrm{~g}, 66.4 \mathrm{mmol})$. After work-up the oily residue was chromatographed to give oily compound $\mathbf{6 a}(7.26 \mathrm{~g}, 38 \%)$. Hydrogenation of the hydroxylamine 6a gave amine $6 \mathbf{b}$, which was directly treated with $\mathrm{Z}-\mathrm{Cl}(5.0 \mathrm{~g}, 29.0$ mmol). After crystallization [from ethyl acetate-cyclohexane ($1: 1$)] pure title compound $\mathbf{6 d}(7.94 \mathrm{~g}, 31 \%$ based on conversion of substrate 4a) was obtained (Found: C, 60.3; H, 5.9; N, 5.6. $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 60.72 ; \mathrm{H}, 5.91 ; \mathrm{N}, 5.66 \%$); $[\alpha]_{\mathrm{D}}^{20}$ $+111\left(c 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2938 \mathrm{w}(\mathrm{CH})$ and 1716 s $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 7.30(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.60\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}\right), 5.10$ [$\left.2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}(\mathrm{Z})\right], 4.90(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{NH}), 4.48(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 4.00$ $(1 \mathrm{H}$, dddd, $5-\mathrm{H}), 3.70(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.30(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.20 / 2.60\left(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}\right), 1.70\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right), 1.60-1.10(4 \mathrm{H}, \mathrm{m}$, 3- and $4-\mathrm{H}_{2}$); $J_{1,2} 3, J_{2 . \mathrm{NH}} 9, J_{3 \alpha, 3 \beta} 14, J_{3 \alpha .4 \beta} 14, J_{4 \alpha .4 \beta} 14, J_{4 \alpha .5}$ $1.5, J_{4 \text { в. } 5} 12, J_{5.6 \mathrm{a}} 3, J_{5.6 \mathrm{~b}} 8.3$ and $J_{6 \mathrm{a} .6 \mathrm{~b}} 13.5 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 157.8$ $[\mathrm{C}=\mathrm{O}(\mathrm{Ac})], 155.7[\mathrm{C}=\mathrm{O}(\mathrm{Z})], 128.9-127.3(\mathrm{Ar}), 118.4\left(\mathrm{CF}_{3}\right), 98.3$ $(\mathrm{C}-1), 66.8\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 64.8(\mathrm{C}-5), 55.4\left(\mathrm{C}-1^{\prime}\right), 54.7(\mathrm{OMe}), 49.5$ $(\mathrm{C}-2), 49.3(\mathrm{C}-6), 28.4(\mathrm{C}-4), 25.1(\mathrm{C}-3)$ and $17.9\left(\mathrm{C}-2^{\prime}\right) ; J\left(\mathrm{CF}_{3}\right.$, F) 297.83 .

Methyl 2-Benzyloxycarbonylamino-2,3,4,6-tetradeoxy-6-\{tri-fluoroacetyl-[(1S)-phenylethyl]amino $\}$ - α-L-erythro-hexopyranoside ent- $6 \mathbf{d}$.-Treatment of oxime ent-5a as described above for compound 5a gave title compound ent- $\mathbf{6 d}(1.15 \mathrm{~g}, 59 \%$) as crystals, m.p. $107^{\circ} \mathrm{C}$ (from MeOH) (Found: C, $60.8 ; \mathrm{H}, 5.9 ; \mathrm{N}$, 5.55%); $[\alpha]_{\mathrm{D}}^{20}-102\left(c 0.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer $\mathbf{6 d}$.

Methyl 2,3,4,6-Tetradeoxy-2-(2,4-dinitrophenylamino)-6-\{tri-fluoroacetyl-[(1R)-phenylethyl]amino $\}-\alpha$-D-erythro-hexopyranoside $\mathbf{6 c}$.-To a solution of compound $\mathbf{6 b}$ ($500 \mathrm{mg}, 1.30$ mmol) in acetone-water ($1: 1$) ($50 \mathrm{~cm}^{3}$) were added solid $\mathrm{NaHCO}_{3}(1.10 \mathrm{~g}, 13.00 \mathrm{mmol})$ and 2,4-dinitrofluorobenzene ($240 \mathrm{mg}, 1.30 \mathrm{mmol}$). The reaction mixture was refluxed for 4.5 h and evaporated. After addition of water, the mixture was extracted with ethyl acetate. The organic phase was dried (MgSO_{4}) and evaporated. The residue was chromtographed (R_{f} $\mathbf{6 c} 0.60$, ethyl acetate) to give title compound $\mathbf{6 c}(600 \mathrm{mg}, 87 \%)$ as yellow crystals, m.p. $123^{\circ} \mathrm{C}$ (from MeOH) (Found: C, $52.5 ; \mathrm{H}$, 4.8; $\mathrm{N}, 10.6 . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires C, $52.48 ; \mathrm{H}, 4.82 ; \mathrm{N}$, $10.39 \%) ; R_{\mathrm{f}} 0.33$ [cyclohexane-ethyl acetate (2:1)]; $[\alpha]_{\mathrm{D}}^{20}+88$ (c $0.08, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300 \mathrm{~s}(\mathrm{CH})$, $3096 \mathrm{w}(\mathrm{CH})$, $1710 \mathrm{~s}(\mathrm{C}=\mathrm{O})$ and $1585 \mathrm{~s}(\mathrm{~N}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.20(1 \mathrm{H}, \mathrm{d}, \mathrm{DNP}$ $3-\mathrm{H}), 8.70(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{NH}), 8.20(1 \mathrm{H}, \mathrm{dd}$, DNP $5-\mathrm{H}), 7.30(5$ $\mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.80(1 \mathrm{H}, \mathrm{d}$, DNP $6-\mathrm{H}), 5.30\left(1 \mathrm{H}, \mathrm{q}, \mathrm{l}^{\prime}-\mathrm{H}\right), 4.75$ ($1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}$), $4.10(1 \mathrm{H}$, dddd, $5-\mathrm{H}), 3.70(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.40$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.40 / 2.70\left(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}\right.$), 1.90-1.30 ($4 \mathrm{H}, \mathrm{m}$, 3 - and $4-\mathrm{H}_{2}$) and $1.70\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1.2} 4.5, J_{2 . \mathrm{NH}} 9, J_{2,3 \alpha}$ $11, J_{4 \text { в. } 5} 11$ and $J_{6 \mathrm{a} .6 \mathrm{~b}} 13.5 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 157.0(\mathrm{C}=0), 130.4$ (DNP C-5), 129.0 (C-m), 128.4 (C-p), 127.3 (C-o), 124.4 (DNP C-3), $118.4\left(\mathrm{CF}_{3}\right), 113.6$ (DNP C-6), 97.1 (C-1), 65.1 (C-5), 55.4 (C-1'), 54.4 (OMe), 49.1 (C-6), 28.0 (C-4), 24.0 (C-3) and 17.1 (C-2').

Methyl 2,3,4,6-Tetradeoxy-2-(2,4-dinitrophenylamino)-6-

 $\{[2,4$-dinitrophenyl-(1R)-phenylethyl]amino $\}$ - α-D-erythro-hexopyranoside $\mathbf{6 f}$.-To a solution of compound $5 \mathrm{a}(1.00 \mathrm{~g}, 2.70$ mmol) in dry $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ were added $\mathrm{Mo}^{\mathrm{V1}}$ oxide (460 mg , $3.20 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(1.00 \mathrm{~g}, 26.00 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ within 5 h (total conversion, TLC). The reaction mixture was neutralized with acetic acid, filtered (Celite), and evaporated and the residue was diluted with water; the dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase was evaporated to give a syrup ($620 \mathrm{mg}, \sim 65 \%$, the COCF_{3} group was not totally lost). The latter was dissolved in dry ethanol (10 cm^{3}) and $\mathrm{NaBH}_{4}(500 \mathrm{mg}, 13.00 \mathrm{mmol})$ was added (TLC control, $\left.R_{\mathrm{f}} 0.80, \mathrm{MeOH}\right)$. Work-up as above provided compound $6 e(300 \mathrm{mg})$ as an oil.The crude oil 6 e was treated with $\mathrm{NaHCO}_{3}(290 \mathrm{mg}, 3.30$ mmol) and 2,4 -dinitrofluorobenzene ($420 \mathrm{mg}, 2.30 \mathrm{mmol}$) to give title compound $\mathbf{6 f}(280 \mathrm{mg}, 41 \%$, based on substrate $5 \mathrm{5a}$) as yellow crystals, m.p. $82^{\circ} \mathrm{C}$ (from EtOH) (Found: C, $54.0 ; \mathrm{H}, 4.4$; $\mathrm{N}, 14.3 . \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{10}$ requires C, $54.36 ; \mathrm{H}, 4.73 ; \mathrm{N}, 14.08 \%$); $R_{\mathrm{f}} 0.28$ [ethyl acetate-cyclohexane (2:1)]; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3340 \mathrm{w}(\mathrm{NH}), 2920 \mathrm{w}(\mathrm{CH})$ and $1590 \mathrm{~s}(\mathrm{~N}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.10(2$ H, d, $2 \times$ DNP $3-\mathrm{H}$), $8.67(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{NH}), 8.20(2 \mathrm{H}, \mathrm{dd}$, $2 \times$ DNP 5-H), $7.20(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.84(2 \mathrm{H}, \mathrm{d}, 2 \times$ DNP $6-\mathrm{H})$, $4.89\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}\right), 4.64(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 3.74(1 \mathrm{H}$, dddd, $5-\mathrm{H})$, $3.70(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, $3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.31 / 3.00(2 \mathrm{H}, \mathrm{dd}, 6-$ $\left.\mathrm{H}_{2}\right), 1.96 / 1.79\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 1.94 / 1.34\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$ and 1.72 ($3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}$); $J_{1.2} 3.5, J_{2 . \mathrm{NH}} 9$ and $J_{6 \mathrm{a} .6 \mathrm{~b}} 13.5 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 130.7$ (C-m), 130.3 (DNP C-5) 128.8 (C-p), 127.4 (DNP C-5), 127.1 (C-o), 124.6/123.0 ($2 \times$ DNP C-3), 121.0/113.9 ($2 \times$ DNP C6), 97.3 (C-1), 65.2 (C-5), 62.7 (C-1'), 55.1 (OMe), $51.4(\mathrm{C}-2)$, 50.1 (C-6), 27.4 (C-4), 24.0 (C-3) and 16.3 (C-2').

Methyl 2-Benzyloxycarbonylamino-2,3,4,6-tetradeoxy-6-

 [(1R)-phenylethylamino]- α-D-erythro-hexopyranoside $\mathbf{6 g}$.-Toa solution of compound $\mathbf{6 d}(2.30 \mathrm{~g}, 4.60 \mathrm{mmol})$ in dry ethanol ($100 \mathrm{~cm}^{3}$) was added NaBH_{4} in portions ($500 \mathrm{mg}, 13.00 \mathrm{mmol}$) at room temperature within 4 h . Additional $\mathrm{NaBH}_{4}(200 \mathrm{mg}$, 5.20 mmol) was added and the reaction mixture was stirred for $1 \mathrm{~h}\left(\sim 90 \%\right.$ conversion, TLC control, $R_{\mathrm{f}} \mathbf{6 g} 0.40$, ethyl acetate). Excess of NaBH_{4} was destroyed with acetic acid (pH 7) and the mixture was evaporated. After addition of water, it was extracted with ethyl acetate and the organic phase was dried (MgSO_{4}). Evaporation and chromatography (ethyl acetate) gave title compound $6 \mathrm{~g}(1.10 \mathrm{~g}, 70 \%$ based on conversion) as an oil; $[\alpha]_{\mathrm{D}}^{20}-7\left(c 0.50 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300 \mathrm{w}(\mathrm{NH})$, 2924w (CH) and 1714s (C=O); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.20(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $5.10\left[2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.00(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{NH}), 4.60(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$, $3.80(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 5-\mathrm{H}), 3.78$ ($1 \mathrm{H}, \mathrm{q}, \mathrm{1}^{\prime}-\mathrm{H}$), $3.38(3 \mathrm{H}, \mathrm{s}$, OMe), 2.55/2.45 ($2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}$), 1.84-1.45 ($4 \mathrm{H}, \mathrm{m}, 3-$ and $4-$ H_{2}) and $1.36\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1.2} 3.5, J_{2, \mathrm{NH}} 9, J_{5.6 \mathrm{a}} 3, J_{5.6 \mathrm{~b}} 9$ and $J_{6 \mathrm{a} .6 \mathrm{~b}} 13.5 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 155.7(\mathrm{C}=0), 128.5-126.5(\mathrm{Ar}), 98.3(\mathrm{C}-$ 1), $67.1(\mathrm{C}-5), 66.7\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 57.9\left(\mathrm{C}-1^{\prime}\right), 54.9(\mathrm{OMe}), 51.9(\mathrm{C}-$ 6), 49.7 (C-2), 28.0 (C-4), 25.0 (C-3) and 24.3 (C-2'); m / z (inter alia) $398\left(\mathrm{M}^{+}, 30 \%\right)$ and $383\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 22\right)$.

Methyl 2-Benzyloxycarbonylamino-2,3,4,6-tetradeoxy-6-[(1S)-phenylethylamino]- α-L-erythro-hexopyranoside ent- $\mathbf{6 g}$.Treatment of amide ent- $\mathbf{6 d}$ as described above for compound $\mathbf{6 d}$ gave title compound ent- $6 \mathrm{~g}(1.20 \mathrm{~g}, 71 \%$ based on conversion) as an oil; $[\alpha]_{\mathrm{D}}^{20}+27\left(c 0.07, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer $\mathbf{6 g}$.

Methyl 2,3,4,6-Tetradeoxy-2,6-bis-(2,4-dinitrophenylamino)-α-D- and - α-L-erythro-hexopyranoside $\mathbf{6 k}$ and ent-6k.-Method (a). A solution of compound $\mathbf{6 g}(1.00 \mathrm{~g}, 2.50 \mathrm{mmol})$ in MeOH ($100 \mathrm{~cm}^{3}$) was hydrogenated in the presence of $10 \% \mathrm{Pd}-\mathrm{C}(2.50$ g) at room temperature for $24 \mathrm{~h}\left(50 \times 10^{5} \mathrm{~Pa}\right)$. The catalyst was removed by filtration, and washed with hot MeOH ; the filtrates were evaporated to give free diamine $\mathbf{6 j}(400 \mathrm{mg})$. The crude diamine $6 \mathbf{j}$ was treated with solid $\mathrm{NaHCO}_{3}(2.60 \mathrm{~g}, 30 \mathrm{mmol})$ and 2,4-dinitrofluorobenzene ($930 \mathrm{mg}, 5.00 \mathrm{mmol}$) to give title compound $6 \mathbf{k}(1.10 \mathrm{~g}, 68 \%)$ as yellow crystals, m.p. $109^{\circ} \mathrm{C}$ (from EtOH).
Method (b). A solution of compound $\mathbf{6 f}(100 \mathrm{mg}, 0.17 \mathrm{mmol})$ in TFAA ($10 \mathrm{~cm}^{3}$) was heated at $65^{\circ} \mathrm{C}$ for 10 min . After evaporation and filtration (silica gel, $R_{\mathrm{f}} 0.64$, ethyl acetate) the title compound $\mathbf{6 k}(78 \mathrm{mg}, 94 \%)$ was obtained as yellow crystals.
Treatment of compound ent- $\mathbf{6 g}$ as described for compound $\mathbf{6 g}$ (method a) gave compound ent- $6 \mathrm{k}(1.10 \mathrm{~g}, 68 \%$) as yellow crystals, m.p. $109^{\circ} \mathrm{C}$ (from EtOH).

Compound 6k had $[\alpha]_{\mathrm{D}}^{20}+38$ (c $0.08, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\max }$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3348 \mathrm{w}(\mathrm{NH}), 3010 \mathrm{w}(\mathrm{CH})$ and 1586s ($\mathrm{N}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.15(2 \mathrm{H}, \mathrm{d}, 2 \times \mathrm{DNP} 3-\mathrm{H}), 8.88(1 \mathrm{H}, \mathrm{t}, 6-\mathrm{NH})$, $8.79(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{NH}), 8.31 / 8.21(2 \mathrm{H}, \mathrm{dd}, 2 \times$ DNP $5-\mathrm{H}), 6.96(2$ $\mathrm{H}, \mathrm{d}, 2 \times$ DNP 6-H), $4.90(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 4.20(1 \mathrm{H}$, dddd, $5-\mathrm{H})$, $3.89(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.59(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.61 / 3.45\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, 2.11/2.00 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$) and 1.91/1.74 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}$); $J_{1.2} 3$, $J_{2, \mathrm{NH}} 9, J_{3 \alpha, 3 \beta} 14, J_{4 \alpha, 4 \mathrm{\beta}} 14, J_{4 \alpha .5} 1.5, J_{4 \beta, 5} 12, J_{5.6 \mathrm{a}} 3, J_{5.6 \mathrm{~b}} 8.3$ and $J_{6 \mathrm{a} .6 \mathrm{~b}} 13.5 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 130.4(2 \times$ DNP C-5), 124.6/124.3 ($2 \times$ DNP C-3), 113.9/113.6 ($2 \times$ DNP C-6), 97.6 (C-1), 66.6 (C-5), 55.9 (OMe), 51.5 (C-2), 47.3 (C-6), 27.4 (C-4) and 23.8 (C-3); m / z (inter alia) $492\left(\mathrm{M}^{+}, 5 \%\right), 461\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}, 5\right)$ and $415\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}-\mathrm{NO}_{2}, 6\right)$.
Compound ent-6k had $[\alpha]_{\mathrm{D}}^{20}-41\left(c 0.16, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer $\mathbf{6 k}$.

1-O-Acetyl-2,3,4,6-tetradeoxy-2,6-bis-(2,4-dinitrophenyl-amino)-D- and -L-erythro-hexopyranose $7 \mathrm{bb}(\alpha: \beta 5.5: 1)$ and ent$7 \mathbf{b}(\alpha: \beta 3: 1)$.-A solution of glycoside $\mathbf{6 k}(450 \mathrm{mg}, 0.91 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}\left(46 \mathrm{~cm}^{3}\right)$, acetic acid ($75 \mathrm{~cm}^{3}$) and $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ $\mathrm{H}_{2} \mathrm{SO}_{4}\left(58 \mathrm{~cm}^{3}\right.$) was refluxed for 3 h [total conversion, TLC control, $R_{\mathrm{f}} \mathbf{6 k} 0.70, R_{\mathrm{f}} 7 \mathbf{a} 0.60\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)\right]$. After
addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ the stirred reaction mixture was neutralized and cooled with aq. $\mathrm{NaOH}\left(57.12 \mathrm{~g}\right.$ in $\left.300 \mathrm{~cm}^{3}\right)$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed successively with saturated aq. NaHCO_{3} and water; the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was chromatographed $\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)\right]$ to give not totally pure (TLC) compound $7 \mathbf{7 a}(350 \mathrm{mg}$) as a yellow oil. The latter was acetylated under standard conditions (3 h). Evaporation and chromatography ($R_{\mathbf{f}} \mathbf{7 b} 0.58$, ethyl acetate) gave the acetate $\mathbf{7 b}(340 \mathrm{mg}, 68 \%)$ as a yellow crystalline mixture $\left(\alpha: \beta=5.5: 1\right.$), m.p. $94^{\circ} \mathrm{C}$ (from acetone).

Treatment of compound ent-6k as described for isomer $\mathbf{6 k}$ gave title product ent-7b ($310 \mathrm{mg}, 66 \%$) as a yellow crystalline mixture ($\alpha: \beta=5: 1$), m.p. $94^{\circ} \mathrm{C}$ (from acetone).

Acetate 7b: (Found: C, $46.2 ; \mathrm{H}, 3.9 ; \mathrm{N}, 16.15 . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{11}$ requires $\mathrm{C}, 46.16 ; \mathrm{H}, 3.76 ; \mathrm{N}, 16.14 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3364 \mathrm{w}$ (NH), 2952w (CH), 1751s ($\mathrm{C}=\mathrm{O}$) and $1580 \mathrm{~s}(\mathrm{~N}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $9.15(2 \mathrm{H}, \mathrm{d}, 2 \times$ DNP 3-H), $8.72(1 \mathrm{H}, \mathrm{t}, 6-\mathrm{NH}), 8.60(1 \mathrm{H}, \mathrm{d}$, $2-\mathrm{NH}), 8.31 / 8.28(2 \mathrm{H}, \mathrm{dd}, 2 \times \mathrm{DNP} 5-\mathrm{H}), 6.96 / 6.94(2 \mathrm{H}$, $2 \times$ DNP 6-H), $6.30(\mathrm{~d}, \alpha-7 \mathrm{~b}, 1-\mathrm{H})$ and $5.67(\mathrm{~d}, \beta-7 \mathrm{~b}, 1-\mathrm{H})$ (together 1 H), $4.20(1 \mathrm{H}$, dddd, $5-\mathrm{H}), 3.85(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, $3.61 / 3.45(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}), 2.22(\mathrm{~s}, \alpha-7 \mathrm{~b}, \mathrm{Ac})$ and $1.95(3 \mathrm{H}, \mathrm{s}, \beta-7 \mathbf{b}$, Ac) (together 3 H), 2.11/2.00 $\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$ and $1.91 / 1.74(2 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{H}_{2}\right) ; J_{1.2}(\alpha-7 \mathrm{~b}) 3.5, J_{1.2}(\beta-7 \mathrm{~b}) 10, J_{2 . \mathrm{NH}} 9, J_{2.3 \alpha} 11, J_{4 \mathrm{\beta}, 5} 11$, $J_{5,6 \mathrm{a}} 4.5, J_{5.6 \mathrm{~b}} 7.5, J_{6 \mathrm{a} .6 \mathrm{~b}} 13.5$ and $J_{6 . \mathrm{NH}} 4.5 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 169.1/168.6 (C=O), $130.7 / 130.4(2 \times$ DNP C-5), $124.5 / 124.2$ ($2 \times$ DNP C-3), $113.9 / 113.7$ ($2 \times$ DNP C-6), $96.0(\mathrm{C}-1, \beta-7 b)$, 89.7 (C-1, $\alpha-7 \mathrm{~b}), 68.8$ (C-5), 50.2 (C-2), 47.0 (C-6), 27.1 (C-4), 24.4/23.9 (COMe) and 20.7 (C-3).

Compound ent-7b: (Found: C, 46.2; H, 3.9; N, 16.15\%); ${ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer $7 \mathbf{7}$.

Methyl 2-Benzyloxycarbonylamino-2,3,4,6-tetradeoxy-6-

 \{methyl-[(1R)-phenylethyl]amino\}- α-D-erythro-hexopyranoside 61.-To a solution of compound $\mathbf{6 g}(220 \mathrm{mg}, 0.54 \mathrm{mmol})$ in dry acetonitrile ($10 \mathrm{~cm}^{3}$) were added $\mathrm{K}_{2} \mathrm{CO}_{3}(74 \mathrm{mg}, 5.40 \mathrm{mmol})$ and MeI ($8 \mathrm{mg}, 0.58 \mathrm{mmol}$) at room temperature within 2 h . Additional $\mathrm{K}_{2} \mathrm{CO}_{3}(74 \mathrm{mg}, 5.40 \mathrm{mmol})$ and $\mathrm{MeI}(220 \mathrm{mg}, 0.54$ mmol) were added to the mixture, which was stirred for 1 h ($\sim 70 \%$ conversion, TLC, $R_{f} 6 e 0.48$, ethyl acetate). Excess of MeI was destroyed by stirring with 3% aq. NaOH for 15 min. After evaporation, and addition of water, the mixture was extracted with ethyl acetate, and the organic phase was dried (MgSO_{4}) and chromatographed (ethyl acetate) to give title compound $61(165 \mathrm{mg}, 71 \%$ based on conversion) as an oil, $[\alpha]_{\mathrm{D}}^{20}+73\left(c 0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3438 \mathrm{w}(\mathrm{NH}), 2934 \mathrm{w}$ (CH) and $1721 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.28(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.10[2$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.00(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{NH}), 4.60(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 3.77(2 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{and} 5-\mathrm{H}), 3.70\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}\right), 3.38(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.60 / 2.40$ ($2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}$), $2.23(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 1.80-1.64(4 \mathrm{H}, \mathrm{m}, 3-$ and $4-$ $\left.\mathrm{H}_{2}\right)$ and $1.35\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1.2} 3.5, J_{2 . \mathrm{NH}} 9$ and $J_{5.6 \mathrm{a}}=J_{5.6 \mathrm{~b}}$ $6, J_{6 \mathrm{a} .6 \mathrm{~b}} 13.5 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 155.8(\mathrm{C}=\mathrm{O}), 128.6-126.8(\mathrm{Ar}), 98.5$ (C-1), $66.8\left[\mathrm{C}-5, \mathrm{CH}_{2}(\mathrm{Z})\right] 63.1$ (C-1'), 58.3 (OMe), 55.1 (C-6), 49.8 (C-2), 39.8 (NMe), 29.0 (C-4), 25.4 (C-3) and 17.4 (C-2'); $m / z($ inter alia $) 412\left(\mathbf{M}^{+}, 5 \%\right)$ and $398\left(\mathbf{M}^{+}-\mathrm{CH}_{3}, 2\right)$.Methyl 2-Benzyloxycarbonylamino-2,3,4,6-tetradeoxy-6$\{$ methyl- $[(1 \mathrm{~S})$-phenylethyl $]$ amino $\}-\alpha-\mathrm{L}$-erythro-hexopyranoside ent-61.-Treatment of compound ent-6g as described for isomer 6 g gave title compound ent- $61(300 \mathrm{mg}, 63 \%$ based on conversion) as an oil; $[\alpha]_{\mathrm{D}}^{20}-85\left(c 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer $\mathbf{6 l}$.

Methyl 2,3,4,6-Tetradeoxy-2-(2,4-dinitrophenylamino)-6-[(2, 4-dinitrophenyl)methylamino]- $\alpha-\mathrm{D}-$ and $-\alpha-\mathrm{L}$-erythro-hexopyranoside $6 n$ and ent-6n.-Hydrogenation of compound 61 (560 $\mathrm{mg}, 1.34 \mathrm{mmol}$) gave compounds $\mathbf{6 m} /$ ent $\mathbf{- 6 m}$ as a crude oil; the oily residue was treated with $\mathrm{NaHCO}_{3}(1.76 \mathrm{~g}, 20.00 \mathrm{mmol})$ and

2,4-dinitrofluorobenzene ($500 \mathrm{mg}, 2.72 \mathrm{mmol}$) as described for compound $6 \mathbf{j}$ to give title compound 6 ($580 \mathrm{mg}, 84 \%$) as yellow crystals, m.p. $209^{\circ} \mathrm{C}$ (from CHCl_{3}).

Compound ent-6n ($570 \mathrm{mg}, 82 \%$) was obtained from compound ent-6l as yellow crystals, m.p. $209^{\circ} \mathrm{C}\left(\right.$ from $\left.\mathrm{CHCl}_{3}\right)$.
Compound $6 \mathrm{n}: R_{\mathrm{f}} 0.60$ (ethyl acetate); $[\alpha]_{\mathrm{D}}^{20}+52(c 0.26$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3322 \mathrm{~s}(\mathrm{NH}), 2928 \mathrm{~s}(\mathrm{CH})$ and 1762 s $(\mathrm{N}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.16 / 8.70(2 \mathrm{H}, \mathrm{d}, 2 \times \mathrm{DNP} 3-\mathrm{H}), 8.74(1 \mathrm{H}$, d, 2-NH), $8.25(2 \mathrm{H}, \mathrm{dd}, 2 \times$ DNP 5-H), 7.18/6.90 (2 H , d, $2 \times$ DNP 6-H), $4.74(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 4.14(1 \mathrm{H}$, dddd, $5-\mathrm{H}), 3.80(1$ $\mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.60\left(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}\right), 3.43(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.10(3 \mathrm{H}, \mathrm{s}$, $\mathrm{NMe})$ and $2.05-1.50(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 4-\mathrm{H}) ; J_{1.2} 3.5, J_{2 . \mathrm{NH}} 9$, $J_{5.6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=3.7$ and $J_{6 \mathrm{a}, 6 \mathrm{~b}} 7.5 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) \quad 130.5 / 127.6$ $(2 \times$ DNP C-5), $\quad 124.7 / 124.0(2 \times$ DNP C-3), $118.0 / 113.6$ ($2 \times$ DNP C-6), 97.5 (C-1), 66.7 (C-5), 58.3 (OMe), 55.9 (C-2), 51.6 (C-6), 42.2 (NMe), 27.7 (C-4) and $24.0(\mathrm{C}-3$); m/z (inter alia) $506\left(\mathrm{M}^{+}, 42 \%\right)$ and $475\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}, 36\right)$.
Compound ent-6n: $[\alpha]_{\mathrm{D}}^{20}-40\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer $6 \mathbf{n}$.

Methyl 2-(tert-Butoxycarbonylamino)-2,3,4,6-tetradeoxy-6$\{$ trifluoroacetyl-[(1R)-phenylethyl]amino\}- α-D-erythro-hexopyranoside $6 \mathbf{0}$.-To a solution of crude compound $\mathbf{6 b}(2.90 \mathrm{~g}$, $8.00 \mathrm{mmol})$ in $\mathrm{MeOH}\left(40 \mathrm{~cm}^{3}\right)$ were added $\mathrm{NaHCO}_{3}(2.00 \mathrm{~g}$, $8.00 \mathrm{mmol})$ and di-tert-butyl dicarbonate $(1.73 \mathrm{~g}, 8.00 \mathrm{mmol})$ and the mixture was kept in an ultrasonic bath at $10^{\circ} \mathrm{C}$ for 3 h (total conversion, TLC, $R_{\mathrm{f}} \mathbf{6 b}=0.60, \mathrm{MeOH}$). The mixture was evaporated, the residue was diluted with water and extracted with ethyl acetate, and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was filtered (silica gel, $\boldsymbol{R}_{\mathrm{f}}$ 600.60 , ethyl acetate) to give title compound $60(3.00 \mathrm{~g}, 65 \%)$ as crystals, m.p. $79^{\circ} \mathrm{C}$ (from hexane) (Found: C, $56.7 ; \mathrm{H}, 6.6 ; \mathrm{N}$, 6.0. $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 57.38 ; \mathrm{H}, 6.78 ; \mathrm{N}, 6.08 \%$; $[\alpha]_{\mathrm{D}}^{20}+77\left(c 0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3332 \mathrm{w}(\mathrm{NH}), 2972 \mathrm{~s}$ $\left(\mathrm{Bu}^{t}\right), 2940 \mathrm{w}(\mathrm{CH})$ and $1679 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.28(5 \mathrm{H}, \mathrm{m}$, Ph), $5.28\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}\right), 4.70(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{NH}), 4.50(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H})$, $4.00(1 \mathrm{H}$, dddd, $5-\mathrm{H}), 3.63(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.28(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.21 / 2.62\left(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}\right), 1.70\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right), 1.50-1.10(4 \mathrm{H}$, $\left.\mathrm{m}, 3-\mathrm{and} 4-\mathrm{H}_{2}\right)$ and $1.50\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right) ; J_{1.2} 3.7, J_{2 . \mathrm{NH}} 9, J_{3 \alpha, 3 \mathrm{~B}} 14$, $J_{4 \alpha, 4 \beta} 14, J_{4 \alpha, 5} 1.7, J_{4 \beta, 5} 11, J_{5.6 \mathrm{a}} 3, J_{5,6 \mathrm{~b}} 8$ and $J_{6 \mathrm{a} .6 \mathrm{~b}} 13.5$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 157.2[\mathrm{C}=\mathrm{O}(\mathrm{Ac})], 155.3[\mathrm{C}=\mathrm{O}(\mathrm{Boc})], 128.6(\mathrm{C}-m)$, $128.3(\mathrm{C}-p), 127.3(\mathrm{C}-o), 118.4\left(\mathrm{CF}_{3}\right), 98.4(\mathrm{C}-1), 77.4$ [C(Boc)], 64.4 (C-5), 55.4 (C-1'), 54.7 (OMe), 49.3 (C-6), 40.0 (C-2), 28.4 [Me (Boc$)], 28.3(\mathrm{C}-4), 25.1(\mathrm{C}-3)$ and $17.9\left(\mathrm{C}-2^{\prime}\right) ; J\left(\mathrm{CF}_{3}, \mathrm{~F}\right)$ 293.54.

Methyl 2-(tert-Butoxycarbonylamino)-2,3,4,6-tetradeoxy-6$\{$ trifluoroacetyl-[(1S)-phenylethyl]amino $\}-\alpha-\mathrm{L}-\mathrm{ery}$ thro-hexopyranoside ent-60.-Treatment of compound ent-6b as described for isomer 6b gave title compound ent-60 (3.30 g, 73\%) as crystals, m.p. $79^{\circ} \mathrm{C}$ (from hexane) (Found: C, $57.2 ; \mathrm{H}, 6.8 ; \mathrm{N}$, 5.8%) ; $[\alpha]_{\mathrm{D}}^{20}-78\left(c 0.99, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer $\mathbf{6 0}$.

Methyl 2-(tert-Butoxycarbonylamino)-2,3,4,6-tetradeoxy-6-
(1R)-phenylethylamino]- α-D-erythro-hexopyranoside $\mathbf{6 p}$.-[(1R)-phenylethylamino]- α-D-erythro-hexopyranoside 6p.Treatment of amide $60(2.40 \mathrm{~g}, 5.20 \mathrm{mmol})$ with $\mathrm{NaBH}_{4}(750$ $\mathrm{mg}, 20.00 \mathrm{mmol}$) as described for compound 6d gave title product $6 \mathrm{p}\left(1.10 \mathrm{~g}, 78 \%\right.$ based on conversion) as an oil; $R_{\mathrm{f}} 0.30$ (ethyl acetate); $[\alpha]_{\mathrm{D}}^{20}+31\left(c 0.48, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3432w (NH), 2970w (CH), 2930s (Bu^{t}) and 1706s (C=O); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.73(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{NH}), 4.50(1 \mathrm{H}, \mathrm{d}$, $1-\mathrm{H}), 3.77\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 1^{\prime}-\mathrm{H}\right), 3.63(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.30(3 \mathrm{H}, \mathrm{s}$, OMe), $2.71(1 \mathrm{H}, \mathrm{t}, 6-\mathrm{NH}), 2.50\left(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}\right), 1.60-1.40(4 \mathrm{H}$, $\left.\mathrm{m}, 3-\mathrm{and} 4-\mathrm{H}_{2}\right), 1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$ and $1.24\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}\right) ; J_{1,2} 3.5$, $J_{2, \mathrm{NH}} 9, J_{5.6 \mathrm{a}} 3, J_{5.6 \mathrm{~b}} 9$ and $J_{6 \mathrm{a} .6 \mathrm{~b}} 13.5 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 155.2(\mathrm{C}=\mathrm{O})$, $128.5(\mathrm{C}-m), 126.9(\mathrm{C}-p), 126.6(\mathrm{C}-o), 98.5(\mathrm{C}-1), 79.3$ [C(Boc)], 67.1 (C-5), 57.9 (C-1'), 54.9 (OMe), 51.8 (C-6), 40.3 (C-2), 28.4
[Me(Boc)], 28.2 (C-4), 25.1 (C-3) and 24.2 (C-2'); m / z (inter alia) $364\left(\mathrm{M}^{+}, 5 \%\right), 337\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}, 7\right)$ and $307\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}\right.$, 4).

Methyl 2-(tert-Butoxycarbonylamino)-2,3,4,6-tetradeoxy-6-[(1S)-phenylethylamino]- α-L-erythro-hexopyranoside ent- $6 \mathbf{p}$.Treatment of amide ent-60 as described for isomer $\mathbf{6 0}$ gave title product ent-6p ($950 \mathrm{mg}, 66 \%$ based on conversion) as an oil; $[\alpha]_{\mathrm{D}}^{20}-36\left(c \quad 0.31, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer $\mathbf{6 p}$.

Methyl 2-(tert-Butoxycarbonylamino)-2,3,4,6-tetradeoxy-6-\{methyl-[(1R)-phenylethyl]amino\}- α-D-erythro-hexopyranoside $\mathbf{6 q}$.-Treatment of compound $\mathbf{6 p}(1.15 \mathrm{~g}, 3.20 \mathrm{mmol})$ with $\mathrm{K}_{2} \mathrm{CO}_{3}(880 \mathrm{mg}, 6.30 \mathrm{mmol})$ and $\mathrm{MeI}(450 \mathrm{mg}, 3.20 \mathrm{mmol})$, and after 2 h further addition of $\mathrm{K}_{2} \mathrm{CO}_{3}(880 \mathrm{mg}, 6.30 \mathrm{mmol})$ and MeI ($450 \mathrm{mg}, 3.20 \mathrm{mmol}$) as described for compound $\mathbf{6 g}$ gave title product $6 \mathbf{q}\left(610 \mathrm{mg}, 70 \%\right.$ based on conversion) as an oil; R_{f} 0.44 (ethyl acetate); $[\alpha]_{\mathrm{D}}^{20}+40\left(c 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3442w (NH), 2970w (CH), 2930s (Bu^{t}) and 1707s ($\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.76(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{NH}), 4.55(1 \mathrm{H}, \mathrm{d}$, $1-\mathrm{H}), 3.70\left(3 \mathrm{H}, \mathrm{m}, 2-, 5-\mathrm{and} 1^{\prime}-\mathrm{H}\right), 3.35(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.38(2 \mathrm{H}$, dd, 6-H2), $2.21(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 1.77-1.42\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 4-\mathrm{H}_{2}\right)$, $1.42\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$ and $1.30\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1.2} 3.7, J_{2 . \mathrm{NH}} 9$, $J_{5.6 \mathrm{a}}=J_{5.6 \mathrm{~b}}=6$ and $J_{6 \mathrm{a}, 6 \mathrm{~b}} 13.5 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 155.3(\mathrm{C}=\mathrm{O}), 128.1$ (C-m), $127.8(\mathrm{C}-p), 126.8(\mathrm{C}-o), 98.7(\mathrm{C}-1), 70.3$ [C(Boc)], 66.7 (C-5), 63.1 (C-1'), 58.4 (C-6), 55.0 (OMe), 49.4 (C-2), 39.7 (NMe), 29.1 (C-4), 28.5 [$\mathrm{Me}(\mathrm{Boc})], 25.4(\mathrm{C}-3)$ and 17.4 (C-2'); $m / z($ inter alia $) 378\left(\mathrm{M}^{+}, 1 \%\right)$ and $346\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}-\mathrm{H}, 2\right)$.

Methyl 2-(tert-Butoxycarbonylamino)-2,3,4,6-tetradeoxy-6-\{methyl-[(1S)-phenylethyl]amino\}- α-L-erythro-hexopyranoside ent-6q.-Method (a). Treatment of compound ent-6p as described for isomer 6p gave title compound ent- $\mathbf{6 q}(610 \mathrm{mg}$, 70% based on conversion) as an oil.

Method (b). To a solution of substrate ent-6p (1.90 g, 5.22 mmol) in dry propanonitrile ($60 \mathrm{~cm}^{3}$) were added $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.50 \mathrm{~g}, 10.90 \mathrm{mmol}), \mathrm{MeI}(1.11 \mathrm{~g}, 7.30 \mathrm{mmol})$ and a catalytic amount of tert-butylammonium iodide at room temperature. After 1.5 h , additional MeI ($370 \mathrm{mg}, 2.60 \mathrm{mmol}$) was added (total conversion after 2 h, TLC). Work-up as above gave compounds ent- $\mathbf{6 q}(1.20 \mathrm{~g}, 61 \%)$ and ent-14b (640 mg, 24%) as yellowish crystals, m.p. $109^{\circ} \mathrm{C}$ (from MeOH).

Product ent-6q had $[\alpha]_{\mathrm{D}}^{20}-59\left(c 0.12, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer $\mathbf{6 q}$.

Methyl 2,3,4,6-Tetradeoxy-2-(2,4-dinitrophenylamino)-6-\{methyl-[(1R)-phenylethyl]amino\}-a-D-erythro-hexopyranoside $\mathbf{6 s}$.-Method (a). A solution of carbamate $\mathbf{6 q}(870 \mathrm{mg}$, $2.30 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}\left(220 \mathrm{~cm}^{3}\right)$ and $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(5 \mathrm{~cm}^{3}\right)$ was heated to $75^{\circ} \mathrm{C}$ for 2 h (total conversion, TLC, $R_{\mathrm{f}} \mathbf{6 q} 0.44$, ethyl acetate). The mixture was evaporated, the residue was dissolved in acetone-water $(1: 1)\left(50 \mathrm{~cm}^{3}\right), 2,4$-dinitrofluorobenzene ($470 \mathrm{mg}, 2.50 \mathrm{mmol}$) and solid $\mathrm{NaHCO}_{3}(2.00 \mathrm{~g}, 23.00$ mmol) were added, and the mixture was refluxed for 2 h . After evaporation, and addition of water, the mixture was extracted with ethyl acetate, and the organic phase dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was chromatographed $\left[R_{\mathrm{f}} \mathbf{6 s} 0.61\right.$, $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)\right]$ to give title compound $\mathbf{6 s}(810 \mathrm{mg}, 79 \%)$ as a yellow oil.

Method (b). A solution of carbamate $61(160 \mathrm{mg}, 0.40 \mathrm{mmol})$ and TMSI ($83 \mathrm{mg}, 0.40 \mathrm{mmol}$) in dry acetonitrile $\left(10 \mathrm{~cm}^{3}\right)$ was stirred at room temperature $\left(\mathrm{N}_{2}\right)$ for 5 min (TLC control, $R_{\mathrm{f}} 6 \mathbf{l}$ 0.48 , ethyl acetate). After conventional work-up, the residue was treated with 2,4-dinitrofluorobenzene ($7 \mathrm{mg}, 0.40 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(330 \mathrm{mg}, 4.00 \mathrm{mmol})$ as described above to give title compound $\mathbf{6 s}(38 \mathrm{mg}, 22 \%)$ as a yellow oil; $[\alpha]_{\mathrm{D}}^{20}+16$ (c 2.0 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3338 \mathrm{w}(\mathrm{NH})$, 2932s (CH) and 1614 s
$(\mathrm{N}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.10(1 \mathrm{H}, \mathrm{d}, \mathrm{DNP} 3-\mathrm{H}), 8.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{DNP}$ $5-\mathrm{H}), 8.72(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{NH}), 7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.86(1 \mathrm{H}, \mathrm{d}$, DNP $6-\mathrm{H}), 4.75(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 3.90(1 \mathrm{H}$, dddd, $5-\mathrm{H}), 3.73(2 \mathrm{H}, \mathrm{m}, 2-$ and $\left.1^{\prime}-\mathrm{H}\right), 3.50(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.53 / 2.43\left(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}\right), 2.27(3$ $\mathrm{H}, \mathrm{s}, \mathrm{NMe}), 1.90 / 1.83\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 1.80 / 1.22\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$ and $1.36\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1.2} 3.7, J_{2 . \mathrm{NH}} 9, J_{3 \alpha .3 \beta} 15, J_{5.6 \mathrm{a}}=$ $J_{5.6 \mathrm{~b}}=6$ and $J_{6 \mathrm{a} .6 \mathrm{~b}} 13.5 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 130.4$ (DNP C-5), 128.2 (C-m), 127.9 (C-p), 127.0 (C-o), 124.7 (DNP C-3), 113.7 (DNP C-6), 97.6 (C-1), 67.1 (C-5), 63.3 (C-1'), 58.1 (C-6), 55.5 (OMe), 52.1 (C-2), 40.0 (NMe), 28.5 (C-4), 24.5 (C-3) and 17.3 (C-2'); m / z (inter alia) $445\left(\mathrm{M}^{+}, 18\right)$.

Methyl 2,3,4,6-Tetradeoxy-2-(2,4-dinitrophenylamino)-6-\{methyl-[(1S)-phenylethyl]amino\}- α-L-erythro-hexopyranoside ent-6s.--Treatment of compound ent- $\mathbf{6 q}$ as described for isomer $6 \mathbf{q}(\operatorname{method} a)$ gave title product ent-6s $(830 \mathrm{mg}, 81 \%$ based on conversion) as a yellow oil; $[\alpha]_{\mathrm{D}}^{20}-27\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer $\mathbf{6 s}$.
(2S)/(2R)-2-\{Methyl-[(1S)-phenylethyl]aminomethyl\}-3,4-di-hydro-2H-pyran ent-12/12'.-Method (a). To a solution of amine ent-3/3' $(5: 1)(200 \mathrm{mg}, 0.92 \mathrm{mmol})$ in dry acetonitrile (3.5 cm^{3}) were added formaldehyde ($138 \mathrm{mg}, 4.60 \mathrm{mmol}$) and $\mathrm{NaBH}_{3} \mathrm{CN}(167 \mathrm{mg}, 2.60 \mathrm{mmol})$ at room temperature. After the mixture had been stirred for 15 min , acetic acid (pH 7), and after $45 \mathrm{~min}, 2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{KOH}\left(6.7 \mathrm{~cm}^{3}\right)$ were added. The mixture was extracted with diethyl ether, and the organic phase washed successively with $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{KOH}$ and $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The oily residue was chromatographed (ethyl acetate) to give title amines ent-12/12' (6 $\mathrm{mg}, 29 \%$) as an oil.

Method (b). To a solution of amines ent-3/3' (5:1) (200 mg, 0.92 mmol) in dry $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ were added solid NaHCO_{3} $(76 \mathrm{mg}, 0.99 \mathrm{mmol})$ and $\mathrm{MeI}(140 \mathrm{mg}, 0.99 \mathrm{mmol})$ at room temperature. After the mixture had been stirred for 36 h [$\sim 50 \%$ conversion, TLC, R_{f} ent-12/12' 0.52 , ethyl acetate-cyclohexane ($1: 1$)], excess of MeI was destroyed with 3% aq. $\mathrm{NaOH}(15 \mathrm{~min}$ stirring). After concentration, and addition of water, the mixture was extracted with ether, and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and chromatographed [ethyl acetate-cyclohexane ($1: 1$)] to give title compounds ent-12/12' (5:1) (310 mg, 72% based on conversion) as an oil; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2965 \mathrm{w}(\mathrm{CH})$ and 1642s $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.35(1 \mathrm{H}, \mathrm{dt}, 6-\mathrm{H})$, 4.60 and $3.93(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.67\left(1 \mathrm{H}, \mathrm{q}, \mathrm{l}^{\prime \prime}-\mathrm{H}\right), 2.60 / 2.42(2 \mathrm{H}$, dd, $\left.1^{\prime}-\mathrm{H}_{2}\right), 2.27 / 2.25(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.00\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$, $1.84 / 1.50\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$ and $1.39 / 1.35\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime \prime}-\mathrm{H}_{3}\right) ; J_{2,3 \alpha} 2.5$, $J_{2.3 \beta} 7.5, J_{3 \alpha .3 \beta} 15, J_{3 \beta .4 \alpha} 10, J_{3 \beta .4 \beta} 4, J_{4 \alpha .4 \beta} 15, J_{5.6} 6, J_{6.4 \alpha} 1.5$, $J_{4 \beta, 6} 1.5, J_{2,1^{\prime} \mathrm{a}} 6, J_{2.1^{\prime} \mathrm{b}} 6.8$ and $J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}} 13.5 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 143.7(\mathrm{C}-$ $6), 128.1(\mathrm{C}-m), 127.9(\mathrm{C}-p), 126.8(\mathrm{C}-o), 100.4(\mathrm{C}-5), 73.1(\mathrm{C}-2)$, $63.6\left(\mathrm{C}-1^{\prime \prime}\right), 57.7\left(\mathrm{C}-1^{\prime}\right), 39.9(\mathrm{NMe}), 26.2(\mathrm{C}-4), 19.6(\mathrm{C}-3)$ and 18.0 (C-2"); m / z (inter alia) $231\left(\mathrm{M}^{+}, 8 \%\right.$).

1-O-Acetyl-2,3,4,6-tetradeoxy-2-(2,4-dinitrophenylamino)-6-[2,4-dinitrophenylmethyl)amino]-D- and L-erythro-hexopyranose 13a $(\alpha: \beta 4: 1)$ and ent-13a ($\alpha: \beta 5: 1$).--Cleavage of compound 6 n ($470 \mathrm{mg}, 0.95 \mathrm{mmol}$) and acetylation as described for compound 6 k gave product $13 \mathrm{a}(400 \mathrm{mg}, 88 \%)$ as a yellow crystalline mixture ($\alpha: \beta 4: 1$), m.p. $88^{\circ} \mathrm{C}$ (from EtOH).

Compound ent-6n analogously gave product ent-13a (340 $\mathrm{mg}, 75 \%$) as a yellow crystalline mixture ($\alpha: \beta 5: 1$), m.p. $88^{\circ} \mathrm{C}$ (from EtOH).

Compound 13a had $R_{\mathrm{f}} 0.14\left(\mathrm{Et}_{2} \mathrm{O}\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3342 \mathrm{w}$ $(\mathrm{NH}), 2944(\mathrm{CH}), 1750 \mathrm{~s}(\mathrm{C}=\mathrm{O})$ and $1587 \mathrm{~s}(\mathrm{~N}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 9.13/8.64 (2 H, d, $2 \times$ DNP 3-H), $8.50(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{NH}), 8.24(2 \mathrm{H}$, dd, $2 \times$ DNP 5-H), 7.10/7.00 (2 H, d, $2 \times$ DNP 6-H), 6.15 and $5.51(\mathrm{~d}, \alpha-13 \mathrm{a}, 1-\mathrm{H})$ and $(\mathrm{d}, \beta-13 \mathrm{a}, 1-\mathrm{H})$ (together 1 H$), 4.14(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}), 4.00(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.76 / 3.63\left(2 \mathrm{H}, \mathrm{d}, 6-\mathrm{H}_{2}\right), 3.00(3 \mathrm{H}, \mathrm{s}$, $\mathrm{NMe}), 2.17$ (β-13a) and 2.14 (α-13a) (together $3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{Ac}$) and
2.00-1.65 (4 H, m, 3- and 4- H_{2}); $J_{1,2}(\alpha-13 \mathrm{a}) 3, J_{1.2}(\beta-13 \mathrm{a}) 6$, $J_{2 . \mathrm{NH}} 9, J_{3 \alpha .3 \mathrm{\beta}} 12, J_{4 \alpha .4 \mathrm{\beta}} 12, J_{6 \mathrm{a}, 6 \mathrm{~b}} 6 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 169.2(\mathrm{C}=\mathrm{O})$, 130.7/127.7 ($2 \times$ DNP C-5), $124.6(2 \times$ DNP C-3), 123.8/113.7 ($2 \times$ DNP C-6), 89.5 (C-1), 68.9 (C-5), 58.1 (C-2), 50.2 (C-6), 41.7 (NMe), 29.7/27.4 (COMe), 24.5 (C-4) and $20.8(\mathrm{C}-3) ; m / z$ (inter alia) $534\left(\mathrm{M}^{+}, 10 \%\right)$ and $475\left(\mathrm{M}^{+}-\mathrm{Ac}, 8\right)$.

Compound ent-13a: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer 13a.

1-O-Acetyl-2,3,4,6-tetradeoxy-2-(2,4-dinitrophenylamino)-6$\{$ methyl-[(1R)-phenylethyl]amino\}-D-erythro-hexopyranose 13b ($\alpha: \beta 9.3: 1$).-Cleavage of glycoside $6 \mathbf{s}(430 \mathrm{mg}, 0.96 \mathrm{mmol})$ and acetylation as described for compound $6 \mathbf{k}$ gave title product $\mathbf{1 3 b}$ $(300 \mathrm{mg}, 63 \%)$ as a yellow oil ($\alpha: \beta 9.3: 1$); $R_{\mathrm{f}} 0.47$ (ethyl acetate); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3340 \mathrm{~s}(\mathrm{NH})$, 2966w (CH$), 1749 \mathrm{~s}(\mathrm{C}=\mathrm{O})$ and $1615 \mathrm{~s}(\mathrm{~N}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.10(1 \mathrm{H}, \mathrm{d}, \mathrm{DNP} 3-\mathrm{H}), 8.50(1 \mathrm{H}, \mathrm{d}$, 2-NH), $8.25(1 \mathrm{H}, \mathrm{dd}$, DNP 5-H), $7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.00(1 \mathrm{H}, \mathrm{d}$, DNP 6-H), $6.24(\mathrm{~d}, \alpha-13 \mathrm{~b} 1-\mathrm{H})$ and $5.50(\mathrm{~d}, \beta-13 \mathrm{~b}, 1-\mathrm{H})$ (together 1 H$), 4.00(2 \mathrm{H}, \mathrm{m}, 2-$ and $5-\mathrm{H}), 3.73\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}\right)$, $2.59 / 2.41\left(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}\right), 2.25(\mathrm{~s}, \alpha-13 \mathrm{~b}, \mathrm{Ac})$ and $2.06(\mathrm{~s}, \boldsymbol{\beta}-13 \mathrm{~b}$, Ac) (together 3 H), $2.19(1 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.00-1.50(4 \mathrm{H}, \mathrm{m}, 3$ - and $\left.4-\mathrm{H}_{2}\right)$ and $1.35\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1.2}(\alpha-13 b) 3, J_{1.2}(\beta-13 b) 7$, $J_{2 . \mathrm{NH}} 9, J_{4 \alpha .4 \beta} 13.5, J_{5,6 \mathrm{a}}=J_{5.6 \mathrm{~b}}=6$ and $J_{6 \mathrm{a} .6 \mathrm{~b}}=13.5$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 169.6 / 147.4(\mathrm{C}=\mathrm{O}), 130.7(\mathrm{DNP} \mathrm{C}-5), 128.2(\mathrm{C}-m)$, 128.0 (C-p), 127.1 (C-o), 124.6 (DNP C-3), 113.8 (DNP C-6), 96.8 (C-1, $\beta-13 \mathrm{~b}), 90.0(\mathrm{C}-1, \alpha-13 \mathrm{~b}), 69.4(\mathrm{C}-5), 63.5$ (C-1'), 57.6 (C-2), 50.8 (C-6), 39.8 (NMe), 28.5/28.3 [Me (Ac)], 24.9 (C-4), 20.9 (C-3) and $17.0\left(\mathrm{C}-2^{\prime}\right) ; m / z$ (inter alia) $472\left(\mathrm{M}^{+}, 100 \%\right)$ and $309\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}, 20\right)$.

1-O-Acetyl-2,3,4,6-tetradeoxy-2-(2,4-dinitrophenylamino)-6-\{methyl-[(1S)-phenylethyl]amino\}-L-erythro-hexopyranose ent13b $(\alpha: \beta 7: 1)$.-Cleavage of glycoside ent-6s and acetylation as described for compound 6s gave title compound ent-13b (300 $\mathrm{mg}, 63 \%$) as a yellow oil ($\alpha: \beta 7: 1$); ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer $\mathbf{1 3 b}$.

Methyl 2-(tert-Butoxycarbonylamino)-2,3,4,6-tetradeoxy-6-\{dimethyl-[(1S)-phenylethyl]ammonio\}- $\alpha-\mathrm{L}-\mathrm{ery}$ thro-hexopyranoside Iodide ent-14b. $-[\alpha]_{\mathrm{D}}^{20}+2(c 0.2, \mathrm{MeOH}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3440w (NH), 2966w ($\mathrm{CH}, \mathrm{Bu}^{t}$) and $1695 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.70-7.50(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.43\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}\right), 4.73(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{NH})$, $4.61(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 4.40 / 4.22\left(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}\right), 3.65(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and}$ $5-\mathrm{H}), 3.48(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.40 / 3.25(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NMe}), 1.95(3 \mathrm{H}$, d, $\left.2^{\prime}-\mathrm{H}_{3}\right), 1.75-1.35\left(4 \mathrm{H}, \mathrm{m}, 3-\right.$ and $\left.4-\mathrm{H}_{2}\right)$ and $1.39\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$; $J_{1.2} 3, J_{2 . \mathrm{NH}} 8.25$ and $J_{5.6 \mathrm{a}} 7.5 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 155.1(\mathrm{C}=\mathrm{O}) 132.3-$ $129.0(\mathrm{Ar}), 99.2(\mathrm{C}-1), 80.0$ [C(Boc)], $74.5(\mathrm{C}-5), 65.2(\mathrm{C}-6)$, 63.8 (C-1'), 57.1 (OMe), $49.2(\mathrm{C}-2), 48.6 / 48.1(2 \times \mathrm{NMe}), 28.5$ (C-4), $28.4[\mathrm{Me}(\mathrm{Boc})], 23.1(\mathrm{C}-3)$ and $15.63\left(\mathrm{C}-2^{\prime}\right) ; \mathrm{m} / \mathrm{z}$ (inter alia) $378\left(\mathrm{M}^{+}-\mathrm{Me}, 1.5 \%\right), 363\left(\mathrm{M}^{+}-2 \times \mathrm{CH}_{3}\right.$, 1), $348\left(\mathrm{M}^{+}-3 \times \mathrm{CH}_{3}, 1\right), 347\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}-\mathrm{CH}_{3}, 1\right)$, $332\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}-2 \times \mathrm{CH}_{3}, 1\right), 317\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}-\right.$ $\left.3 \times \mathrm{CH}_{3}, 1\right)$ and $277\left(\mathrm{M}^{+}-\mathrm{CH}_{3}-\mathrm{Boc}, 1\right)$.

Methyl 2-Azido-2,3,4,6-tetradeoxy-6-\{[(1R)-phenylethyl]-(trifluoroacetyl)amino\}- α-D-erythro-hexopyranoside 15a.-To a solution of $\mathrm{NaN}_{3}(8.00 \mathrm{~g}, 0.12 \mathrm{~mol})$ in water $\left(20 \mathrm{~cm}^{3}\right)-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($25 \mathrm{~cm}^{3}$) was added, under N_{2}, trifluoromethanesulfonic anhydride $\left(4.1 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ within 30 min . After being stirred at room temperature for 2 h , the mixture was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 10 \mathrm{~cm}^{3}\right)$; the combined organic phase was washed successively with saturated aq. $\mathrm{NaHCO} \mathrm{H}_{3}, 1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$, and water, and dried $\left(\mathrm{MgSO}_{4}\right)$. The TfN_{3} solution $\left(\sim 0.26 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ was stored at $4^{\circ} \mathrm{C}$.

To a solution of compound $6 \mathbf{b}(2.04 \mathrm{~g}, 5.40 \mathrm{mmol})$ in dry $\mathrm{MeOH}\left(100 \mathrm{~cm}^{3}\right)$ were added $\mathrm{NaHCO}_{3}(2.00 \mathrm{~g}, 24 \mathrm{mmol})$ and the TfN_{3} solution ($45 \mathrm{~cm}^{3}, 0.26 \mathrm{~mol} \mathrm{dm}^{-3}$) at room temperature. After being stirred for 36 h , the mixture was evaporated. After
addition of water, the mixture was extracted with ethyl acetate and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation and chromatography [$R_{\mathrm{f}} 15 \mathrm{a} 0.50$, cyclohexane-ethyl acetate $\left.(1: 1)\right]$ gave title compound $15 \mathrm{a}(1.10 \mathrm{~g}, 35-50 \%$) as crystals, m.p. $25-$ $28^{\circ} \mathrm{C}$ (from EtOAc) (Found: $\mathrm{C}, 51.75 ; \mathrm{H}, 5.5 ; \mathrm{N}, 14.5$. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 52.85 ; \mathrm{H}, 5.48 ; \mathrm{N}, 14.5 \%$; $[\alpha]_{\mathrm{D}}^{20}$ $+73\left(c 0.33, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3056 \mathrm{~s}(\mathrm{CH}), 2176 \mathrm{~s}\left(\mathrm{~N}_{3}\right)$ and $1721 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.45-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.30(1 \mathrm{H}$, $\left.\mathrm{q}, 1^{\prime}-\mathrm{H}\right), 4.66(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 4.03(1 \mathrm{H}$, dddd, $5-\mathrm{H}), 3.37(3 \mathrm{H}, \mathrm{s}$, OMe), $3.24 / 2.68\left(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}\right), 3.08(1 \mathrm{H}$, dddd, $2-\mathrm{H}), 2.00(1$ H, dddd, $3 \alpha-\mathrm{H}), 1.70\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right), 1.85-1.60(2 \mathrm{H}, \mathrm{m}, 3 \beta$ - and $4 \beta-\mathrm{H})$ and $1.14(1 \mathrm{H}$, dddd, $4 \alpha-\mathrm{H}) ; J_{1,2} 3, J_{2.3 \alpha} 12, J_{2.3 \beta} 5, J_{4 \alpha .4 \beta}$ $12.7, J_{4 \alpha, 5} 4.5, J_{4 \beta .5} 12.5, J_{5.6 \mathrm{a}} 2.5, J_{5.6 \mathrm{~b}} 7.5, J_{6 \mathrm{a} .6 \mathrm{~b}} 12$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 161.6(\mathrm{C}=\mathrm{O}), 128.9-127.2(\mathrm{Ar}), 118.2\left(\mathrm{CF}_{3}\right), 98.8(\mathrm{C}-$ 1), 64.9 (C-5), 57.2 (C-2), 55.4 (C-1'), 54.8 (OMe), 49.0 (C-6), $28.4(\mathrm{C}-4), 22.6(\mathrm{C}-3)$ and $17.9\left(\mathrm{C}-2^{\prime}\right) ; m / z$ (inter alia) $386\left(\mathrm{M}^{+}\right.$, $6 \%), 355\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}, 10\right), 313\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}-\mathrm{N}_{3}, 12\right)$ and $216\left(\mathrm{M}^{+}-\mathrm{N}_{3}-\mathrm{OCH}_{3}-\mathrm{COCF}_{3}, 21\right)$.

Methyl 2-Azido-2,3,4,6-tetradeoxy-6-\{[(1S)-phenylethyl $]$ (trifluoroacetyl)amino $\}-\alpha-\mathrm{L}$-erythro-hexopyranoside ent-15a.Treatment of compound ent-6b as described for compound $\mathbf{6 b}$ gave title compound ent-15a ($1.10 \mathrm{mg}, 35-50 \%$) as crystals, m.p. $25-28{ }^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]_{\mathrm{D}}^{20}-71\left(c 0.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer 15a.

Methyl 2-Azido-2,3,4,6-tetradeoxy-6-[(1R)-phenylethyl-amino]- α-D-erythro-hexopyranoside $\mathbf{1 5 b}$.-To a solution of amide $15 \mathrm{a}(1.10 \mathrm{~g}, 2.80 \mathrm{mmol})$ in dry ethanol $\left(50 \mathrm{~cm}^{3}\right)$ was added, in portions, $\mathrm{NaBH}_{4}(26 \mathrm{mg}, 7.00 \mathrm{mmol})$ at room temperature within 2 h (total conversion, TLC, $R_{\mathrm{f}} \mathbf{1 5 b} 0.30$, ethyl acetate). After conventional work-up, the residue was chromatographed (ethyl acetate) to give title compound $\mathbf{1 5 b}$ $(805 \mathrm{mg}, 95 \%)$ as an oil; $[\alpha]_{\mathrm{D}}^{20}+32\left(c \quad 0.12, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3058 \mathrm{~s}(\mathrm{CH})$ and $1965 \mathrm{~s}\left(\mathrm{~N}_{3}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.38-$ $7.26(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.67(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 3.99(1 \mathrm{H}$, dddd, $5-\mathrm{H}), 3.78$ ($1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}$), 3.46 (3 H, s, OMe), 3.15 (1 H , dddd, 2-H), 2.57/ $2.45\left(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}\right), 2.04(1 \mathrm{H}$, dddd, $3 \alpha-\mathrm{H}), 1.85(1 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H})$, $1.64 / 1.51\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$ and $1.35\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1.2} 3, J_{2,3 \alpha} 12$, $J_{2,3 \beta} 4.5, J_{3 \beta .4 \alpha} 3.75, J_{3 \beta .4 \beta} 4.5, J_{4 \alpha, 4 \beta} 12, J_{4 \alpha .5} 3, J_{4 \beta .5} 10.5, J_{5.6 \mathrm{a}}$ $3.5, J_{5.6 \mathrm{~b}} 7.5, J_{6 \text { a. } 6 \mathrm{~b}} 12 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 126.9-126.5(\mathrm{Ar}), 98.7(\mathrm{C}-1)$, 66.9 (C-5), 58.2 (C-1'), 57.9 (C-2), 55.0 (OMe), 51.6 (C-6), 28.0 (C-4), $24.3(\mathrm{C}-3)$ and 22.5 (C-2'); m/z (inter alia) $290\left(\mathrm{M}^{+}, 2 \%\right.$), $259\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}, 3\right)$ and $248\left(\mathrm{M}^{+}-\mathrm{N}_{3}, 36\right)$.

Methyl 2-Azido-2,3,4,6-tetradeoxy-6-[(1S)-phenylethylamino $]-\alpha-$-erythro-hexopyranoside ent-15b.-Treatment of compound ent-15a as described for isomer 15a gave title compound ent $-15 \mathrm{~b}(800 \mathrm{mg}, 94 \%)$ as an oil; $[\alpha]_{\mathrm{D}}^{20}-35(c 0.38$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer 15 b .

Methyl 2-Azido-2,3,4,6-tetradeoxy-6-\{methyl-[(1R)-phenylethyl]amino $\}-\alpha-\mathrm{D}-\mathrm{ery}$ thro-hexopyranoside 15 c .-Treatment of compound $\mathbf{1 5 b}(500 \mathrm{mg}, 1.72 \mathrm{mmol})$ with $\mathrm{K}_{2} \mathrm{CO}_{3}(0.70 \mathrm{~g}, 5.00$ $\mathrm{mmol})$ and $\mathrm{MeI}(0.35 \mathrm{~g}, 2.58 \mathrm{mmol})$ as described for compound 6 g . Chromatography $\left[R_{\mathrm{f}} 15 \mathrm{c} 0.27\right.$, cyclohexane-ethyl acetate (3:1)] gave title compound $15 \mathrm{c}(312 \mathrm{mg}, 55 \%$ based on conversion) as an oil; $[\alpha]_{\mathrm{D}}^{20}+58 \quad\left(c \quad 0.01, \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3074 \mathrm{~s}(\mathrm{CH})$, 2836m $\left(\mathrm{CH}_{3}\right)$ and $2174 \mathrm{~s}\left(\mathrm{~N}_{3}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.36-7.18(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.69(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 3.86(1$ H , dddd, $5-\mathrm{H}), 3.69\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}\right), 3.46(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.14(1 \mathrm{H}$, dddd, 2-H), 2.50/2.34 (2 H, dd, 6-H2), 2.25 (3 H, s, NMe), 2.01 (1 H , dddd, $3 \alpha-\mathrm{H}$), $1.90-1.24\left(3 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H}\right.$ and $\left.4-\mathrm{H}_{2}\right)$ and $1.36(3$ $\left.\mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1,2} 3, J_{2.3 \alpha} 11.5, J_{2.3 \mathrm{\beta}} 7, J_{3 \alpha, 4 \beta} 12, J_{5.6 \mathrm{a}} 6, J_{5.6 \mathrm{~b}} 6$ and $J_{6 \mathrm{a} .6 \mathrm{~b}} 12.7 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 128.1-126.5(\mathrm{Ar}), 98.9(\mathrm{C}-1), 66.6$ (C-5), 63.1 (C-1'), 58.4 (C-6), 58.1 (C-2), 55.1 (OMe), 39.9 (NMe), $29.0(\mathrm{C}-4), 22.7(\mathrm{C}-3)$ and 17.3 (C-2'); m / z (inter alia) 304
$\left(\mathrm{M}^{+}, 2 \%\right), 289\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 1\right), 262\left(\mathrm{M}^{+}-\mathrm{N}_{3}, 3\right)$ and 247 $\left(\mathrm{M}^{+}-\mathrm{N}_{3}-\mathrm{CH}_{3}, 5\right)$.

Methyl 2-Azido-2,3,4,6-tetradeoxy-6-\{methyl-[(1S)-phenylethyl]amino $\}$ - α-L-erythro-hexopyranoside ent-15c.-Treatment of compound ent $\mathbf{1 5 b}$ as described for compound $\mathbf{1 5 b}$ gave title compound ent- $\mathbf{1 5 c}$ ($312 \mathrm{mg}, 55 \%$ based on conversion) as an oil; $[\alpha]_{\mathrm{D}}^{20}-46\left(c 0.81, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer 15 c .

2-Azido-2,3,4,6-tetradeoxy-6-\{methyl-[(1R)-phenylethyl]amino $\}-\alpha$-D-erythro-hexopyranose 16a ($\alpha: \beta 3: 1$).-A solution of compound $15 \mathrm{c}(93 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}\left(3 \mathrm{~cm}^{3}\right)$, acetic acid ($21 \mathrm{~cm}^{3}$) and $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}\left(21 \mathrm{~cm}^{3}\right)$ was refluxed for 4 h (total conversion, TLC, $\boldsymbol{R}_{\mathrm{f}} \mathbf{1 6 a} 0.12$, ethyl acetate). After conventional work-up, compound $16 \mathrm{a}(84 \mathrm{mg}$) was obtained as a crude oil ($\alpha: \beta 3: 1$); $\nu_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3376 \mathrm{w}(\mathrm{OH}), 2964 \mathrm{w}$ (CH) and $2094\left(\mathrm{~N}_{3}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.41-7.13(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.29(\alpha-$ 16a) and 4.51 (β-16a) (each d, together $1 \mathrm{H}, 1-\mathrm{H}$), $4.13(\alpha-\mathbf{1 6 a})$ and 3.58 (each m, together $1 \mathrm{H}, 5-\mathrm{H}), 3.67\left(1 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right), 3.21$ ($\alpha-16 a$) and 3.07 (β-16a) (each dddd, together $1 \mathrm{H}, 2-\mathrm{H}$), 2.72$2.54\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.52$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 2.51-1.80 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}$), $1.73-1.17(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$ and $1.45(\alpha-16 \mathrm{a})$ and $1.38(\beta-16 a)$ (together 3 H , each d, $2^{\prime}-\mathrm{H}_{3}$); $J_{1,2}(\alpha-16 a) 3, J_{1.2}(\beta-16 a) 7$ and $J_{2.3 \mathrm{~B}} 4.5 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 128.9-127.2(\mathrm{Ar}), 98.2(\mathrm{C}-1, \beta-16 \mathrm{a}), 91.8$ (C-1, $\alpha-16 a), 73.9 / 64.2(\mathrm{C}-5), 64.1 / 63.7$ (C-1'), $62.0 / 58.2$ (C-2), 57.5/57.2 (C-6), 40.1/39.7 (NMe), 29.1/28.6 (C-4), 27.8/22.0 (C-3) and 18.7/17.1 (C-2'); m/z (inter alia) $290\left(\mathrm{M}^{+}, 3 \%\right), 275$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 8\right)$ and $248\left(\mathrm{M}^{+}-\mathrm{N}_{3}, 3\right)$.

2-Azido-2,3,4,6-tetradeoxy-6-\{methyl-[(1S)-phenylethyl]amino $\}$ - α-L-erythro-hexopyranose ent-16a ($\alpha: \beta 3: 1$).-Treatment of compound ent-15c as described for isomer 15c gave title compound ent-16a (84 mg) as a crude oil ($\alpha: \beta 3: 1$); ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer 16 a .

1-O-Acetyl-2-azido-2,3,4,6-tetradeoxy-6-\{methyl-[(1R)phenylethyl]amino $\}$ - α-D-erythro-hexopyranose 16b ($\alpha: \beta$ 3:1). -The crude oily compound 16a (84 mg) was acetylated under standard conditions (12 h). Evaporation and flash chromatography [$R_{\mathrm{f}} \mathbf{1 6 b} 0.09$, cyclohexane-ethyl acetate (3:1)] gave acetate 16 b ($42 \mathrm{mg}, 55 \%$ based on conversion) as an oil $(\alpha: \beta 3: 1) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3022 \mathrm{~m}(\mathrm{CH}), 2220 \mathrm{~s}\left(\mathrm{~N}_{3}\right)$ and 1806 s $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.38-7.18(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.14(\mathrm{~d}, \alpha-16 \mathrm{~b}, 1-\mathrm{H})$ and $5.46(\mathrm{~d}, \beta-16 \mathrm{~b}, 1-\mathrm{H})$ (together 1 H$), 3.87(\mathrm{~m}, \alpha-16 \mathbf{b}, 5-\mathrm{H})$ and 3.73-3.60 (m, $\beta-16 \mathrm{~b}, 5-$ and $\left.1^{\prime}-\mathrm{H}\right)$ (together 2 H), 3.41-3.24 (1 H , $\mathrm{m}, 2-\mathrm{H}), 2.57-1.73\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 6-\mathrm{H}_{2}\right.$), 2.24 ($3 \mathrm{H}, \mathrm{s}$, NMe), $2.17(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 1.60-1.14\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$ and $1.36(\mathrm{~d}, \alpha-16 \mathrm{~b}$, $\left.2^{\prime}-\mathrm{H}_{3}\right)$ and $1.33\left(\mathrm{~d}, \boldsymbol{\beta}-\mathbf{1 6 b}, 2^{\prime}-\mathrm{H}_{3}\right)$ (together $3 \mathbf{H}$); $J_{1.2}(\alpha-16 b) 3$ and $J_{1,2}(\beta-16 \mathrm{~b}) 8.2 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 169.4 / 169.2(\mathrm{C}=\mathrm{O}), 128.2-126.5$ (Ar), 95.1 ($\mathrm{C}-1, \boldsymbol{\beta}-16 \mathrm{~b}$), 91.1 (C-1, $\alpha-16 \mathrm{~b}), 75.2 / 69.2$ (C-5), 63.4/63.1 (C-1'), 57.6/57.2 (C-2), 57.5/57.2 (C-6), 39.9/39.8 (NMe), 28.4/28.2/28.1/21.1 [Me(Ac), C-4], 22.6/21.5 (C-3) and 17.1/16.1 (C-2'); m/z (inter alia) $332\left(\mathrm{M}^{+}, 28 \%\right.$), 317 ($\mathrm{M}^{+}-$ $\left.\mathrm{CH}_{3}, 8\right)$ and $290\left(\mathrm{M}^{+}-\mathrm{N}_{3}, 5\right)$.

1-O-Acetyl-2-azido-2,3,4,6-tetradeoxy-6-\{methyl-[(1S)-phenylethyl]amino $\}$ - α-L-erythro-hexopyranose ent-16b ($\alpha: \beta 3: 1$).Treatment of compound ent-16a as described for isomer 16a gave title compound ent-16b ($42 \mathrm{mg}, 55 \%$ based on conversion) as an oil ($\alpha: \beta 3: 1$); ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR data are identical with those of isomer $\mathbf{1 6 b}$.

Methyl 2-Azido-2,3,4,6-tetradeoxy-6-\{[(1R)-phenylethyl](trifluoroacetyl)amino \}- (β)-D-threo(erythro)-hexopyranoside $\alpha(\beta)-20$ and $\alpha(\beta)$-21.-To a mixture of $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}(32.0 \mathrm{~g}$, $60.00 \mathrm{mmol}), \mathrm{NaN}_{3}(3.20 \mathrm{~g}, 48.00 \mathrm{mmol})$ and dry compound 4 a $(10.0 \mathrm{~g}, 32.00 \mathrm{mmol})$ was added dry acetonitrile $\left(100 \mathrm{~cm}^{3}\right)$ at
$-40^{\circ} \mathrm{C}\left(\mathrm{N}_{2}\right)$. The reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 2 h [total conversion, $\alpha, \beta-18 / \alpha, \beta-19$, TLC, diethyl ethercyclohexane (1:1)], then dry $\mathrm{MeOH}\left(30 \mathrm{~cm}^{3}, 0.74 \mathrm{~mol}\right)$ was added. After being stirred at $0^{\circ} \mathrm{C}$ for 2 h [total conversion; four components, TLC, diethyl ether-cyclohexane (1:3)], the homogeneous mixture was evaporated. After addition of water, the mixture was extracted with ethyl acetate ($2 \times 150 \mathrm{~cm}^{3}$), and the organic phase was washed with water ($2 \times 40 \mathrm{~cm}^{3}$), dried (MgSO_{4}), and evaporated. The yellowish oil consisting of isomers $\alpha, \beta-20$ and $\alpha, \beta-21(\alpha-21 \equiv 15 a)(12.10 \mathrm{~g}, 98 \%)$ in average proportions 2.8:5.8:2.8:1 (determined by integration of the $1-\mathrm{H}$ signals in the $250 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra, CDCl_{3}) was chromatographed [diethyl ether-light petroleum ($60-$ $\left.\left.70^{\circ} \mathrm{C}\right)(1: 3)\right]$. Compound $\beta-20$ was obtained in pure oily form; the other three were identified as a mixture. Data for compounds 20 and 21 are given in the next subsection.

2-Azido-2,3,4,6-tetradeoxy-6-\{[(1R)-phenylethyl](trifluoroacetyl)amino $\}$ - α-D-threo(erythro)-hexopyranosyl Nitrates α, β 18 and $\alpha, \beta-19$.-These were formed in average proportions 5.3:1:1.4:1 (integration of the ${ }^{1} \mathrm{H}$ signals in the 250 MHz NMR spectra, CDCl_{3}). The mixture could not be separated by rapid chromatography [diethyl ether-light petroleum $\left(60-70^{\circ} \mathrm{C}\right)$ (1:3)]; isomers $\alpha-18$ and $\alpha-19$ could be enriched, however, to such an extent as to allow their identification by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
Compound α-18: $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2930w (CH), 2095s $\left(\mathrm{N}_{3}\right)$ and $1670 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.40-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.07(1 \mathrm{H}$, $\mathrm{s}, 1-\mathrm{H}), 5.27\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}\right), 4.15(1 \mathrm{H}$, dddd, $5-\mathrm{H}), 3.64(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 3.26 / 2.79\left(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}\right), 1.92\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 1.65(3 \mathrm{H}, \mathrm{d}$, $2^{\prime}-\mathrm{H}_{3}$) and $1.58 / 1.47\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right) ; J_{5,6 \mathrm{a}} 2, J_{5.6 \mathrm{~b}} 8$ and $J_{6 \mathrm{a} .6 \mathrm{~b}} 14$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 157.4(\mathrm{C}=\mathrm{O}), 138.0-127.1(\mathrm{Ar}), 116.6\left(\mathrm{CF}_{3}\right), 97.6(\mathrm{C}-$ 1), 69.0 (C-5), 55.3 (C-1'), 53.7 (C-2), 48.9 (C-6), 23.1 (C-4), 22.7 (C-3) and 17.5 (C-2'); $J_{\mathrm{C} 1 . \mathrm{H}} 180, J_{\mathrm{C} 2 . \mathrm{H}} 148, J_{\mathrm{C} 3 . \mathrm{H}} 132, J_{\mathrm{C} 4 . \mathrm{H}} 130$, $J_{\mathrm{C} 5 . \mathrm{H}} 150, J_{\mathrm{C} 6 . \mathrm{H}} 140$ and $J\left(\mathrm{CF}_{3}, \mathrm{~F}\right) 285$.
Compound $\alpha-19: v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ 2930w (CH), 2095s $\left(\mathrm{N}_{3}\right)$ and $1670 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.40-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.71(1 \mathrm{H}$, d, 1-H), $5.28\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}\right), 4.04(1 \mathrm{H}$, dddd, $5-\mathrm{H}), 3.77(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 3.31 / 2.80\left(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}\right), 2.10-1.24\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 4-\mathrm{H}_{2}\right)$ and $1.61\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1.2} 2, J_{2.3 \beta} 3.5, J_{3 \alpha, 3 \beta} 12, J_{3 \beta, 4 \beta} 4, J_{5.6 \mathrm{a}}$ 2, $J_{5.6 \mathrm{~b}} 8$ and $J_{6 \mathrm{a}, 6 \mathrm{~b}} 14$.
Compound $\alpha-20: v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2930w(CH), 2095s $\left(\mathrm{N}_{3}\right)$ and $1680 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.40-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.30(1 \mathrm{H}$, $\left.\mathrm{q}, 1^{\prime}-\mathrm{H}\right), 4.56(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 4.11(1 \mathrm{H}$, dddd, $5-\mathrm{H}), 3.45(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 3.32(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 3.22/2.73 ($2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}$), $2.03(1 \mathrm{H}$, dddd, $3 \alpha-\mathrm{H})$, $1.77(1 \mathrm{H}$, dddd, $3 \beta-\mathrm{H})$, $1.75\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right)$ and $1.35 / 1.31\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right) ; J_{1.2}<1.0, J_{5.6 \mathrm{a}} 2.0, J_{5.6 \mathrm{~b}} 8.0$ and $J_{6 \mathrm{a} .6 \mathrm{~b}}$ $14.0 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 157.4(\mathrm{C}=\mathrm{O}), 138.4$ (C-ipso), 128.8 (C-m), 128.1 $(\mathrm{C}-p)^{*}, 127.1(\mathrm{C}-o)^{*}, 116.6\left(\mathrm{CF}_{3}\right), 98.4(\mathrm{C}-1), 64.7(\mathrm{C}-5), 56.5$ (C-2)*, $55.2\left(\mathrm{C}-11^{\prime}\right)^{*}, 54.5(\mathrm{OMe})^{*}, 48.9(\mathrm{C}-6), 23.3(\mathrm{C}-4), 22.4(\mathrm{C}-$ 3) and $17.7\left(\mathrm{C}-2^{\prime}\right) ; J\left(\mathrm{CF}_{3}, \mathrm{~F}\right) 285$.

Compound β-20: (Found: C, 52.7; H, 5.5; N, 14.4. $\mathrm{C}_{17^{-}}$ $\mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, $52.58 ; \mathrm{H}, 5.48 ; \mathrm{N}, 14.50 \%$); $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 2930 \mathrm{w}(\mathrm{CH})$, 2095s $\left(\mathrm{N}_{3}\right)$ and $1680 \mathrm{~s}(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.40-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.29\left(1 \mathrm{H}, \mathrm{q}, \mathrm{l}^{\prime}-\mathrm{H}\right), 4.38(1 \mathrm{H}$, d, $1-\mathrm{H}), 3.86(1 \mathrm{H}$, dddd, $5-\mathrm{H})$, $3.56(4 \mathrm{H}, 2-\mathrm{H}$ and OMe$)$, 3.27/2.85 ($2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}$), 1.92-1.37 ($4 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 4-\mathrm{H}_{2}$) and $1.76\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1.2} 1.5, J_{2,3 \beta} 3.5, J_{2.3 \alpha} 3.5, J_{3 \alpha .3 \beta} 14.0$, $J_{3 \text { в.4в }} 4.0, J_{3 \text { в. } 4 \alpha} 4.0, J_{3 \text { в.4 }} 4.0, J_{3 \alpha, 4 \alpha} 14.0, J_{4 \alpha, 4 \beta} 13.5, J_{4 \alpha, 5} 2.5$, $J_{4 \mathrm{\beta} .5} 11.0, J_{5.6 \mathrm{a}} 2.5, J_{5,6 \mathrm{~b}} 8.0, J_{6 \mathrm{a} .6 \mathrm{~b}} 14.5$ and $J_{1^{1} \cdot 2} 7.0 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 157.4 (C=O), 138.3 (C-ipso), 128.9 (C-m), 128.3 (C-p), 127.3 (C-o), $116.6\left(\mathrm{CF}_{3}\right), 102.6(\mathrm{C}-1), 72.6(\mathrm{C}-5), 57.3(\mathrm{C}-2)^{*}, 56.7$ $(\mathrm{OMe})^{*}, 55.5{\left.\text { (} \mathrm{C}-1)^{\prime}\right)^{*}, 49.4(\mathrm{C}-6), 27.3(\mathrm{C}-4), 23.6(\mathrm{C}-3) \text { and } 18.1}$ (C-2'); J(CF $\left.{ }_{3}, \mathrm{~F}\right) 285$.
Compound β-21: $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2930w (CH), 2095s $\left(\mathrm{N}_{3}\right)$ and $1680(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.40-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.31(1 \mathrm{H}, \mathrm{q}$, $\left.1^{\prime}-\mathrm{H}\right), 4.10(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 3.78(1 \mathrm{H}$, dddd, $5-\mathrm{H}), 3.56(3 \mathrm{H}, \mathrm{s}$, OMe), $3.24 / 2.80\left(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}\right), 3.10(1 \mathrm{H}$, ddd, $2-\mathrm{H}), 2.00(1 \mathrm{H}$,
dddd, $3 \alpha-\mathrm{H})$, $1.76\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right)$ and $1.84-1.00(3 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H}$ and $\left.4-\mathrm{H}_{2}\right) ; J_{1.2} 8.5$.

Methyl 2-Azido-2,3,4,6-tetradeoxy-6-[(1R)-phenylethylamino $]-\beta(\alpha)$-D-threo(erythro)-hexopyranoside $\alpha(\beta)-22$ and $\alpha(\beta)$ -23.-To a homogeneous solution of amides $\alpha, \beta-20 / \alpha, \beta-21$ (7.32 $\mathrm{g}, 18.90 \mathrm{mmol})$ in ethanol $\left(100 \mathrm{~cm}^{3}\right)$ was added in portions $\mathrm{NaBH}_{4}(1.00 \mathrm{~g}, 26.50 \mathrm{mmol})$ at room temperature. After being stirred for 12 h [total conversion, TLC, $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)\right]$, the mixture was evaporated. After addition of water, the residue was extracted with ethyl acetate, the extract was washed with water, and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The crude mixture of $\alpha, \beta-22 / \alpha, \beta-23(\alpha-23 \equiv 15 b)$ ($5.06 \mathrm{~g}, 92 \%$) was chromatographed to give pure compounds β $22(2.33 \mathrm{~g}, 42 \%)$ and $\alpha-23(2.00 \mathrm{~g}, 37 \%)$ as oils.

Compound $\beta-22: R_{f} 0.45\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)\right] ; v_{\max }-$ $(\mathrm{KBr}) / \mathrm{cm}^{1}$ 3482w (NH), 2950w (CH) and $2094 \mathrm{~m}\left(\mathrm{~N}_{3}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.35-7.14(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.43(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 3.76(1 \mathrm{H}$, $\left.\mathrm{q}, 1^{\prime}-\mathrm{H}\right), 3.59(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 5-\mathrm{H}), 3.50(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.60(2 \mathrm{H}$, $\left.\mathrm{m}, 6-\mathrm{H}_{2}\right), 1.94(1 \mathrm{H}$, dddd, $3 \alpha-\mathrm{H}), 1.78-1.39(3 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H}$ and $\left.4-\mathrm{H}_{2}\right)$ and $1.35\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1.2} 1.5, J_{2.3 \beta} 3, J_{3 \alpha, 3 \beta} 13.5$, $J_{3 \beta .4 \alpha}=J_{3 \beta .4 \beta}=3$ and $J_{1^{\prime}, 2^{\prime}} 6.7 ; m / z$ (inter alia) $2.90\left(\mathrm{M}^{+}\right.$, $10 \%), 275\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 54\right)$ and $134(54)$.

Methyl 2-Azido-2,3,4,6-tetradeoxy-6-[(1S)-phenylethyl-

 amino $]-\beta(\alpha)-\mathrm{L}-\mathrm{threo}($ erythro)-hexopyranoside ent- $\alpha(\beta)-22$ and ent- $\alpha(\beta)$-23.-Treatment of dry amide ent-4a $(2.00 \mathrm{~g}, 6.40$ $\mathrm{mmol})$ with $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}(6.40 \mathrm{~g}, 12.00 \mathrm{mmol}), \mathrm{NaN}_{3}(640$ $\mathrm{mg}, 9.60 \mathrm{mmol})$ and dry $\mathrm{MeOH}\left(6 \mathrm{~cm}^{3}, 0.15 \mathrm{~mol}\right)$ as described for compound 4a gave compounds ent- $, \beta-20 / e n t-\alpha, \beta-21(2.20 \mathrm{~g}$, $91 \%)$ as a yellowish oil. This oil was treated with $\mathrm{NaBH}_{4}(1.00 \mathrm{~g}$, 26.50 mmol) as described for compounds $\alpha, \beta-20 / \alpha, \beta-21$ to give title compounds ent- $\alpha, \beta-22 / e n t-\alpha, \beta-23(1.51 \mathrm{~g}, 82 \%)$ in average proportions 2.8:5.9:1:1 (determined by integration of the $1-\mathrm{H}$ signals in the $250 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra, CDCl_{3}). The crude mixture was chromatographed $\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)\right.$ and then with ethyl acetate] to give pure products ent- $\alpha-23$ (\equiv ent-15b) ($280 \mathrm{mg}, 15 \%$), ent- $\beta-22$ ($610 \mathrm{mg}, 33 \%$), ent- $\alpha-22$ ($240 \mathrm{mg}, 13 \%$) and a mixture of ent- $\alpha-22 / e n t-\beta-22 / e n t-\beta-23(370 \mathrm{mg}, 20 \%)$ as oils. Compound ent- $\beta-23$ could not be separated, but it was enriched to such an extent as to allow identification by ${ }^{1} \mathrm{H}$ NMR.Compound ent- $\alpha-22: R_{\mathrm{f}} 0.33$ (ethyl acetate); $[\alpha]_{\mathrm{D}}^{20}-73$ (c 1.1, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{1} 2952 \mathrm{~s}(\mathrm{CH}), 2100 \mathrm{~s}\left(\mathrm{~N}_{3}\right)$ and 1493 w $(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.23(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 3.85$ ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.70\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}\right), 3.43(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.32(3 \mathrm{H}, \mathrm{s}$, OMe), 2.48 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), $2.05(1 \mathrm{H}$, dddd, $3 \alpha-\mathrm{H}), 1.97(1 \mathrm{H}$, ddd, $3 \beta-\mathrm{H}), 1.72 / 1.58\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$ and $1.30\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right)$; $J_{1.2}<1, J_{3 \alpha .3 \beta}=J_{4 \alpha .4 \beta}=13.5, J_{3 \alpha .4 \alpha} 3.0, J_{3 \alpha .4 \beta} 13.5, J_{3 \beta .4 \alpha} 3$, $J_{3 \beta .4 \beta} 4.5, J_{4 \alpha .5} 6, J_{4 \beta .5} 13.5, J_{5.6 \mathrm{a}}=J_{5.6 \mathrm{~b}}=6, J_{1^{\prime} .2^{\prime}} 6$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 145.6-126.7(\mathrm{Ar}), 98.6(\mathrm{C}-1), 67.7(\mathrm{C}-5), 58.0\left(\mathrm{C}-1{ }^{\prime}\right)$, 57.2 (OMe)*, $55.0(\mathrm{C}-2)^{*}, 52.1$ (C-6)*, 24.3 (C-4), 23.4 (C-3) and 22.8 (C-2').

Compound ent- $\beta-22: R_{\mathrm{f}} 0.33$ (ethyl acetate); $[\alpha]_{\mathrm{D}}^{20}+51(c 0.2$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2950$ s $(\mathrm{CH}), 2100 \mathrm{~s}\left(\mathrm{~N}_{3}\right)$ and 1493 w $(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.93(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 3.78(1 \mathrm{H}$, $\left.\mathrm{q}, \mathrm{l}^{\prime}-\mathrm{H}\right), 3.61(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 5-\mathrm{H}), 3.51(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.61(2 \mathrm{H}$, $\left.\mathrm{m}, 6-\mathrm{H}_{2}\right), 2.00-1.56\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 4-\mathrm{H}_{2}\right)$ and $1.35\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\right.$ $\left.\mathrm{H}_{3}\right) ; J_{1.2} 1.5, J_{2.3 \alpha} 6, J_{2.3 \beta} 3, J_{3 \alpha .3 \beta}=J_{4 \alpha .4 \beta}=13.5, J_{3 \alpha .4 \alpha} 3.5$, $J_{3 \alpha .4 \beta} 13.5, J_{3 \beta .4 \alpha} 3, J_{3 \beta .4 \beta} 3, J_{4 \beta, 5} 13$ and $J_{1^{\prime}, 2}, 6 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 145.5-126.5 (Ar), 102.5 (C-1), 75.5 (C-5), 58.0 ($\mathrm{C}-1^{\prime}$ and OMe)*, 56.5 (C-2 $^{*}, 51.9(\mathrm{C}-6), 27.2(\mathrm{C}-4), 24.0(\mathrm{C}-3)$ and $23.4\left(\mathrm{C}-2^{\prime}\right)$; m / z (inter alia) $290\left(\mathrm{M}^{+}, 20 \%\right), 275\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 68\right)$ and 248 ($\mathbf{M}^{+}-\mathrm{N}_{3}, 90$).

Compound ent- $\beta-23: R_{\mathrm{f}} 0.22$ (ethyl acetate); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2954s (CH), 2098s $\left(\mathrm{N}_{3}\right), 1490 \mathrm{w}(\mathrm{NH})$ and $1449 \mathrm{~s}(\mathrm{CH})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.23(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.20(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 3.70\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\right.$
H), $3.58(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.51(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.24(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, $2.60\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 1.96-1.40\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 4-\mathrm{H}_{2}\right)$ and $1.29(3$ $\left.\mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1.2}$ 8.5.

Methyl 2-Azido-2,3,4,6-tetradeoxy-6-\{2,4-dinitrophenyl-[(1R)-phenylethyl]amino\}- β-D-threo-hexopyranoside β-24.Treatment of amine $\beta-22(1.14 \mathrm{~g}, 3.93 \mathrm{mmol})$ with NaHCO_{3} $(500 \mathrm{mg}, 6.00 \mathrm{mmol})$ and 2,4-dinitrofluorobenzene $(1.10 \mathrm{~g}, 5.90$ mmol) in acetone ($50 \mathrm{~cm}^{3}$) gave, after filtration \{silica gel, $R_{\mathrm{f}} \beta$ -$\left.240.75\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)\right]\right\}$, title compound $\beta-241.72 \mathrm{~g}$, 96%) as a yellow foam; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2920 \mathrm{~m}(\mathrm{CH}), 2094 \mathrm{~s}\left(\mathrm{~N}_{3}\right)$ and $1523 \mathrm{~s}(\mathrm{~N}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.59(\mathrm{~d}, \mathrm{DNP} 3-\mathrm{H}), 8.24$ (dd, DNP $5-\mathrm{H}), 7.37-7.25\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}\right.$ and DNP 6-H), $4.88\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}\right)$, $4.22(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 3.52(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.44(1 \mathrm{H}$, ddd, $5-\mathrm{H}), 3.38$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.25 / 3.04\left(2 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}_{2}\right), 1.93(1 \mathrm{H}$, ddd, $3 \alpha-\mathrm{H})$, $1.73\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right), 1.62(1 \mathrm{H}$, dddd, $3 \beta-\mathrm{H})$ and $1.34 / 1.23(2 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{H}_{2}\right) ; J_{1.2} 1.5, J_{2.3 \alpha} 3.5, J_{2.3 \beta} 3, J_{3 \alpha .3 \beta} 14.5, J_{3 \alpha .4 \alpha} 4.5, J_{3 \alpha .4 \beta}$ $13, J_{3 \beta .4 \alpha} 3.5, J_{3 \beta .4 \beta} 6.5, J_{4 \alpha .4 \beta} 13, J_{4 \alpha .5} 5, J_{4 \beta .5} 8.5, J_{5.6 \mathrm{a}} 3$, $J_{5.6 \mathrm{~b}} 9, J_{6 \mathrm{a} .6 \mathrm{~b}} 15.5$ and $J_{1^{\prime} .2^{\prime}} 7 ; \delta_{\mathrm{C}^{(}\left(\mathrm{CDCl}_{3}\right) 148.1 \text { (DNP C-1), }}$ 140.2 (DNP C-2)*, 138.3 (DNP C-4)*, 128.6 (C-m), 127.8 (C-p), 127.2 (DNP C-5), 126.9 (C-o), 122.8 (DNP C-3), 121.0 (DNP C6), 102.3 (C-1), 72.6 (C-5), 62.4 (C-1'), 57.0 (C-2), 56.2 (OMe), 50.3 (C-6), $26.9(\mathrm{C}-4), 22.9(\mathrm{C}-3)$ and $16.1\left(\mathrm{C}-2^{\prime}\right) ; m / z$ (inter alia) $456\left(\mathrm{M}^{+}, 0.8 \%\right)$ and $441\left(\mathrm{M}-\mathrm{CH}_{3}, 0.6\right)$.

Methyl 2-Azido-2,3,4,6-tetradeoxy-6-(2,4-dinitrophenyl-amino)- β-d-threo-hexopyranoside $\beta-25$.-A solution of compound $\beta-24(2.91 \mathrm{~g}, 6.38 \mathrm{mmol})$ in acetic acid ($20 \mathrm{~cm}^{3}$) was heated at $85^{\circ} \mathrm{C}$ for 4 h . The mixture was evaporated, the residue was diluted with ethyl acetate, and the organic phase was washed successively twice with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ and water, dried (MgSO_{4}), and evaporated to give the product $\beta-25(2.07 \mathrm{~g}$, 92%) as yellow crystals, m.p. $142{ }^{\circ} \mathrm{C}$ (from ethyl acetate) (Found: C, 43.9; H, 4.6; N, 23.85. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, $44.32 ; \mathrm{H}, 4.58 ; \mathrm{N}, 23.85 \%) ;[\alpha]_{\mathrm{D}}^{20}+93\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3358 \mathrm{w}(\mathrm{NH}), 2950 \mathrm{w}(\mathrm{CH}), 2096 \mathrm{~s}\left(\mathrm{~N}_{3}\right), 1618 \mathrm{~m}$ (NH) and $1523 \mathrm{~s}(\mathrm{~N}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.16(1 \mathrm{H}, \mathrm{d}, \mathrm{DNP} 3-\mathrm{H})$, $8.98(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 8.29(1 \mathrm{H}, \mathrm{dd}$, DNP 5-H), $6.96(1 \mathrm{H}, \mathrm{d}$, DNP $6-\mathrm{H}), 4.58(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 3.86(1 \mathrm{H}$, dddd, $5-\mathrm{H}), 3.74(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 3.61(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.58 / 3.54\left(2 \mathrm{H}\right.$, dd, $\left.6-\mathrm{H}_{2}\right), 2.10(1 \mathrm{H}$, ddd, $3 \alpha-\mathrm{H})$, $1.86(1 \mathrm{H}$, ddd, $3 \beta-\mathrm{H})$ and $1.79-1.50\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$; $J_{1.2} 1.5, J_{2.3 \alpha} 4.5, J_{2.3 \beta} 3, J_{3 \alpha .3 \beta} 13.5, J_{4 \alpha .5} 3, J_{4 \beta .5} 9, J_{5.6 \mathrm{a}} 9$ and $J_{5.6 \mathrm{~b}} 3.75$.

2-Azido-2,3,4,6-tetradeoxy-6-(2,4-dinitrophenylamino)-D-threo-hexopyranose $\mathbf{2 6 a}(\alpha: \beta 1.7: 1)$.-To a solution of glycoside $\beta-25(800 \mathrm{mg}, 2.27 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}\left(16 \mathrm{~cm}^{3}\right)$ were added acetic acid ($160 \mathrm{~cm}^{3}$) and $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}\left(160 \mathrm{~cm}^{3}\right)$ and the mixture was refluxed for 1 h (TLC control). After addition of water $\left(100 \mathrm{~cm}^{3}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$, it was neutralized with aq. $\mathrm{NaOH}\left(120.00 \mathrm{~g}\right.$ in $200 \mathrm{~cm}^{3}$ of water) at $0^{\circ} \mathrm{C}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic phase was washed twice with $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The oily residue was chromatographed [$\mathrm{CHCl}_{3}-$ $\mathrm{MeOH}(10: 1)]$ to give title compound $26 \mathrm{a}(583 \mathrm{mg}, 81 \%)$ as a yellow oil ($\alpha: \beta$ 1.7:1); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3470 \mathrm{~s}(\mathrm{OH})$, 3098w $(\mathrm{CH}), 2926 \mathrm{w}(\mathrm{CH}), 2098 \mathrm{~s}\left(\mathrm{~N}_{3}\right)$ and 1520s $(\mathrm{N}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $9.03(1 \mathrm{H}, \mathrm{m}, \mathrm{DNP} 3-\mathrm{H}), 8.85 / 8.79(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 8.23(1 \mathrm{H}, \mathrm{dd}$, DNP 5-H), 6.94/6.93 (1 H, d, DNP 6-H), 5.22 (s, $\alpha-26 a, 1-H)$ and $4.94(\mathrm{~d}, \beta-26 \mathrm{a}, 1-\mathrm{H})($ together 1 H$), 4.38 / 3.93(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $4.10(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 3.79 / 3.66(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.65-3.39(2 \mathrm{H}, \mathrm{m}, 6-$ H_{2}) and 2.23-1.59 (4 H, m, 3- and 4- H_{2}) ; $J_{1,2}(\alpha-26 a) \sim 0$ and $J_{1.2}(\beta-26 a) 1.5 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 148.4$ (DNP C-1), 136.0/135.9 (DNP C-2), 130.4/130.3 (DNP C-4), 124.2 (DNP C-3), 114.2/114.2 (DNP C-5), 95.0/91.9 (C-1), 73.8/66.6 (C-5), $58.7 / 57.1$ (C-2), 47.7/47.5 (C-6) and 26.4/23.2/22.7/21.6 (C-3 and -4); m / z (inter alia) $338\left(\mathbf{M}^{+}, 36\right)$.

1-O-Acetyl-2-azido-2,3,4,6-tetradeoxy-6-(2,4-dinitrophenyl-amino)-d-threo-hexopyranose 26b ($\alpha: \beta$ 1.7:1).-Compound $26 \mathrm{a}(400 \mathrm{mg}, 1.18 \mathrm{mmol})$ was acetylated under standard conditions (2 h). Evaporation and filtration (silica gel, ethyl acetate) gave title compound $\mathbf{2 6 b}(435 \mathrm{mg}, 97 \%$) as a yellow oil ($\alpha: \beta$ 1.7:1) (Found: C, 44.7; H, 4.2; N, 21.7. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 44.22 ; \mathrm{H}, 4.24 ; \mathrm{N}, 22.10 \%$); $R_{\mathrm{f}} 0.68\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$ ($10: 1$)]; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3100 \mathrm{w}(\mathrm{CH}), 2948 \mathrm{w}(\mathrm{CH}), 2098 \mathrm{~s}\left(\mathrm{~N}_{3}\right)$, $1749 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1519 \mathrm{~s}(\mathrm{~N}=\mathrm{O})$ and $1372 \mathrm{~s}(\mathrm{~N}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.17(1$ H, d, DNP 3-H), $8.81 / 8.73$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{NH}$), $8.28 / 8.27(1 \mathrm{H}, \mathrm{dd}$, DNP 5-H), 6.96/6.95 (1 H, d, DNP 6-H), 6.08 ($\mathrm{s}, \alpha-26 \mathrm{~b}, 1-\mathrm{H}$), $5.84(\mathrm{~d}, \beta-\mathbf{2 6 b}, 1-\mathrm{H})$ (together 1 H), 4.20/4.00 (1 H , dddd, $5-\mathrm{H}$), $3.80 / 3.66(1 \mathrm{H}$, ddd, $2-\mathrm{H}), 3.54\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.20 / 2.15(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Ac})$, $2.16(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}), 2.03 / 1.66(1 \mathrm{H}$, dddd, $3 \beta-\mathrm{H})$ and $1.91 / 1.79$ (2 H , dddd, 4-H); $J_{1.2}(\alpha-26 \mathbf{b}) \sim 0, J_{1,2}(\beta-26 \mathbf{b}) 1.5$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 168.7/168.6 ($\mathrm{C}=\mathrm{O}$), 148.4/148.3 (DNP C-1), 136.4 (DNP C-2), 130.3/130.2 (DNP C-4), 124.3 (DNP C-3), 114.1/114.0 (DNP C-6), 93.9/91.3 (C-1), 74.7/69.3 (C-5), 56.8/55.7 (C-2), 47.6/47.4 (C-6) and 26.7/22.8/22.7/22.4 (C-3 and -4); m / z (inter alia) $380\left(\mathrm{M}^{+}, 100 \%\right)$, $338\left(\mathrm{MH}^{+}-\mathrm{CH}_{3} \mathrm{CO}\right.$, $30)$ and $321\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2}, 50\right)$.

5-Acetoxy-2-azido-6-(2,4-dinitrophenylamino)-1-methoxy-

 hexyl Acetate 27.-To a solution of compound $\beta-25(20 \mathrm{mg}$, 0.06 mmol) in acetic anhydride ($2 \mathrm{~cm}^{3}$) was added one drop of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $-15^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min before being diluted with saturated aq. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was chromatographed $\left[R_{\mathrm{f}} 0.61\right.$, cyclohexane-ethyl acetate ($1: 3$)] to give title acetal $27(10 \mathrm{mg}$, 38%) as a yellow oil; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350 \mathrm{w}(\mathrm{CH}), 2926 \mathrm{~m}(\mathrm{CH})$, $2100 \mathrm{~s}\left(\mathrm{~N}_{3}\right)$ and $1784 \mathrm{~s}(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CHCl}_{3}\right) 9.17(1 \mathrm{H}, \mathrm{d}, \mathrm{DNP}$ $3-\mathrm{H}), 8.74(1 \mathrm{H}, \mathrm{t}, \mathrm{NH}), 8.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{DNP} 5-\mathrm{H}), 7.04 / 7.03(1 \mathrm{H}$, d, DNP 6-H), $5.75 / 5.73(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 5.15(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, 3.52/3.50 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.41(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.62\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, 2.19-2.16 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OAc}$), 2.12 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{OAc}$) and 1.96-1.44 (4 $\mathrm{H}, 3-$ and $\left.4-\mathrm{H}_{2}\right) ; J_{1,2} 4.5 ; m / z$ (inter alia) $452\left(\mathrm{M}^{+}, 2 \%\right)$.Methyl 2-Azido-2,3,4,6-tetradeoxy-6-\{methyl-[(1S)-phenylethyl]amino $\}-\alpha(\beta)$-L-threo-hexopyranoside ent- $\alpha(\beta)-28$.-
Treatment of compound ent- $\beta-22$ ($150 \mathrm{mg}, 0.52 \mathrm{mmol}$) with $\mathrm{K}_{2} \mathrm{CO}_{3}(200 \mathrm{mg}, 1.45 \mathrm{mmol})$ and $\operatorname{MeI}(142 \mathrm{mg}, 1.04 \mathrm{mmol})$, and after 2 h with additional MeI ($71 \mathrm{mg}, 0.52 \mathrm{mmol}$), as described for compound $\mathbf{6 g}$, gave title compound ent- $\beta-28(83 \mathrm{mg}, 65 \%$ based on conversion) as an oil. Treatment of compound ent- $\alpha-$ 22 as described above for isomer ent- $\beta-22$ gave title compound ent $-\alpha-28$ ($82 \mathrm{mg}, 62 \%$ based on conversion).
Compound ent- $\alpha-28$ had $R_{\mathrm{f}} 0.59$ (ethyl acetate); $v_{\text {max }}-$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 2961 \mathrm{~s}(\mathrm{CH}), 2090 \mathrm{~s}\left(\mathrm{~N}_{3}\right)$ and $1439 \mathrm{~s}(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 3.88(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.70$ $\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}\right), 3.50(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.38(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.56 / 2.42$ (2 $\left.\mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.23(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.04(1 \mathrm{H}, \mathrm{dd}, 3 \alpha-\mathrm{H}), 1.80(1 \mathrm{H}$, $\mathrm{m}, 3 \beta-\mathrm{H}), 1.50\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$ and $1.38\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1.2}<1$, $J_{2.3 \alpha}=J_{2.3 \beta}=2.3, J_{3 \alpha .3 \beta} 15, J_{3 \text { B.4 }}=J_{3 \text { B.4 }}=3, J_{5.6 \mathrm{a}}=$ $J_{5.6 \mathrm{~b}}=6, J_{6 \mathrm{a}, 6 \mathrm{~b}} 13.5$ and $J_{1^{\prime}, 2} 6 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 128.0-126.8$ (Ar), 98.6 (C-1), 67.3 (C-5), 63.2 (C.1'), 58.6 (OMe), 57.3 (C-6), 54.9 (C-2), 39.8 (NMe), 24.2 (C-4), 22.9 (C-3) and 17.3 (C-2').

Compound ent- $\beta-28$ had m.p. $48^{\circ} \mathrm{C}$ (from CHCl_{3}); $[\alpha]_{\mathrm{D}}^{20}$ $+62\left(c 0.6, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.30$ (ethyl acetate); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2964 \mathrm{~s}$ $(\mathrm{CH}), 2094 \mathrm{~s}\left(\mathrm{~N}_{3}\right)$ and $1447 \mathrm{~s}(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $4.42(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 3.72\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}\right), 3.63(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.58(1$ $\mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.54(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.61\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.28(3 \mathrm{H}, \mathrm{s}$, NMe), $1.98(1 \mathrm{H}, \mathrm{dd}, 3 \alpha-\mathrm{H}), 1.70(1 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H})$, $1.48(2 \mathrm{H}, \mathrm{m}$, $\left.4-\mathrm{H}_{2}\right)$ and $1.40\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1.2} 1.5, J_{3 \alpha .3 \mathrm{~B}}=J_{4 \alpha, 4 \mathrm{~B}}=13.5$, $J_{3 \alpha, 4 \mathrm{~B}} 3, J_{3 \alpha, 4 \alpha} 3$ and $J_{1^{\prime}, 2,} 6 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 143.8-126.8(Ar), 102.3 (C-1), 75.5 (C-5), 63.2 (C-1'), 58.1 (OMe), $57.9(\mathrm{C}-6), 56.3(\mathrm{C}-2)$, 39.7 (NMe), 27.1 (C-4), $24.2(\mathrm{C}-3)$ and 16.8 (C-2'); m / z (inter alia) $304\left(\mathrm{M}^{+}, 20 \%\right), 289\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 3\right)$ and $262\left(\mathrm{M}^{+}-\mathrm{N}_{3}, 8\right)$.

2-Azido-2,3,4,6-tetradeoxy-6-\{methyl-[(1S)-phenylethyl]amino $\}$-L-threo-hexopyranose ent-29a ($\alpha: \beta 2.0: 1$).-To a solution of glycoside ent- $\beta-28(130 \mathrm{mg}, 0.43 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}(3$ cm^{3}) were added acetic acid ($30 \mathrm{~cm}^{3}$) and $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$ ($30 \mathrm{~cm}^{3}$) and the mixture was refluxed for 5 h . Work-up as described for 26a and chromatography (R_{f} ent-29a 0.21 , ethyl acetate) gave title compound ent-29a ($74 \mathrm{mg}, 60 \%$) as an oil ($\alpha: \beta$ 2.0:1).

Treatment of glycoside ent- $\alpha-28(130 \mathrm{mg}, 0.43 \mathrm{mmol})$ as described above for its isomer ent- β-28 gave compound ent-29a $(99 \mathrm{mg}, 80 \%)$ as an oil ($\alpha: \beta 2.0: 1$).

Compound ent- $\alpha-29 \mathrm{a}$ had $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2974 \mathrm{~s}(\mathrm{CH}), 2102 \mathrm{~s}$ $\left(\mathrm{N}_{3}\right)$ and $1454 \mathrm{w}(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.15(1 \mathrm{H}$, br s, 1-H), $4.20(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.70\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}\right), 3.52(1 \mathrm{H}$, dd, 2-H), 2.68/2.36(2 H, m, 6-H2), $2.22(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.10-1.51$ ($4 \mathrm{H}, \mathrm{m}, 3$ - and 4- H_{2}) and $1.41\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1.2}<1$ and $J_{1^{\prime} \cdot 2}$ $6 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 142.7-127.1(\mathrm{Ar}), 92.0(\mathrm{C}-1), 65.5(\mathrm{C}-5), 63.7\left(\mathrm{C}-1^{\prime}\right)$, 57.9 (C-2), 57.8 (C-6), 39.9 (NMe), 24.3 (C-4), 22.6 (C-3) and 14.2 (C-2'); m / z (inter alia) $290\left(\mathrm{M}^{+}, 0.6 \%\right), 275\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right.$, $0.2), 248\left(\mathrm{M}^{+}-\mathrm{N}_{3}, 1.4\right)$ and $273\left(\mathrm{M}^{+}-\mathrm{COCH}_{3}, 10\right)$.
Compound ent- $\beta-29 \mathrm{a}$ had $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2974 \mathrm{~s}(\mathrm{CH}), 2102 \mathrm{~s}$ $\left(\mathrm{N}_{3}\right)$ and $1454 \mathrm{w}(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.78(1 \mathrm{H}$, d, 1-H), $3.70\left(3 \mathrm{H}, \mathrm{m}, 2-5-\mathrm{and} 1^{\prime}-\mathrm{H}\right), 2.68 / 2.50\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, $2.22(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.10-1.51\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 4-\mathrm{H}_{2}\right)$ and 1.38 (3 $\left.\mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1.2} 1.8$ and $J_{1^{\prime}, 2}{ }^{\prime}$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 142.7-127.1 (Ar), 94.9 (C-1), 74.6 (C-5), 63.5 (C-1'), 59.3 (C-2), 58.0 (C-6), 39.9 (NMe), 26.3 (C-4), 24.0 (C-3) and 17.3 (C-2').

1-O-Acetyl-2-azido-2,3,4,6-tetradeoxy-6-\{methyl-[(1S)-phenylethyl]amino $\}$-L-threo-hexopyranose ent-29b ($\alpha: \beta$ 2.0:1).Compound ent-29a ($70 \mathrm{mg}, 0.24 \mathrm{mmol}$) was acetylated under standard conditions (3 h). Evaporation and chromatography [R_{f} ent- $\alpha-29 \mathrm{~b} 0.52, \mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)$] gave compound ent$\alpha, \beta-29 b(74 \mathrm{mg}, 93 \%)$ as an oil $(\alpha: \beta 2.0: 1)$. Compound ent- $\alpha-29 b$ had $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2972 \mathrm{~s}(\mathrm{CH}), 2104 \mathrm{~s}\left(\mathrm{~N}_{3}\right)$ and $1756 \mathrm{~s}(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 3.95(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 3.68\left(1 \mathrm{H}, \mathrm{q}, 1^{\prime}-\mathrm{H}\right), 3.54(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 2.58 / 2.40(2 \mathrm{H}, \mathrm{m}, 6-$ $\left.\mathrm{H}_{2}\right), 2.22(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.02(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H})$, $1.90(1 \mathrm{H}$, dddd, $3 \beta-\mathrm{H}), 1.55\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$ and $1.35\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\right.$ $\left.\mathrm{H}_{3}\right) ; J_{1.2}<1, J_{2.3 \alpha}=J_{2.3 \beta}=2.3, J_{3 \alpha .3 \beta} 15, J_{3 \beta .4 \alpha}=J_{3 \beta .4 \beta}=$ $3, J_{5.6 \mathrm{a}}=J_{5.6 \mathrm{~b}}=6, J_{6 \mathrm{a} .6 \mathrm{~b}} 13.5$ and $J_{1: 22^{\prime}} 6 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 169.0$ (C=O), 143.5-126.8 (Ar), 91.9 (C-1), $69.9(\mathrm{C}-5), 63.3\left(\mathrm{C}-1^{\prime}\right), 58.0$ (C-2), 56.2 (C-6), 39.8 (NMe), 23.7 (C-4)*, 22.6 (C-3)*, 21.1 [$\mathrm{Me}(\mathrm{Ac})]$ and $17.3\left(\mathrm{C}-2^{\prime}\right) ; m / z$ (inter alia) $332\left(\mathrm{M}^{+}, 20 \%\right), 317$ $\left(\mathbf{M}^{+}-\mathrm{CH}_{3}, 2\right), 290\left(\mathrm{M}^{+}-\mathrm{N}_{3}, 2\right)$ and $273\left(\mathrm{M}^{+}-\mathrm{COCH}_{3}\right.$, 10).

Compound ent- β-29b had $R_{\mathrm{f}} 0.45$ [$\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)\right]$; $\nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2972 \mathrm{~s}(\mathrm{CH}), 2104 \mathrm{~s}\left(\mathrm{~N}_{3}\right)$ and 1756s $(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.76(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 4.20(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 3.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{l}^{\prime}\right.$ - and $\left.2-\mathrm{H}\right), 2.58 / 2.40\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.22(3$ $\mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.18$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), 2.10-1.50 ($4 \mathrm{H}, \mathrm{m}, 3$ - and 4- H_{2}) and $1.35\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}_{3}\right) ; J_{1.2} 1.8, J_{5.6 \mathrm{a}}=J_{5.6 \mathrm{~b}}=6, J_{6 \mathrm{a} .6 \mathrm{~b}} 13.5$ and $J_{1^{\prime} \cdot 2} 6 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 169.0(\mathrm{C}=0), 143.2-126.8(\mathrm{Ar}), 94.1(\mathrm{C}-1)$, 76.1 (C-5), 63.2 (C-1'), 57.5 (C-2)*, $57.3(\mathrm{C}-6)^{*}, 39.4(\mathrm{NMe}), 23.7$ $(\mathrm{C}-4)^{*}, 22.8(\mathrm{C}-3)^{*}, 21.0[\mathrm{Me}(\mathrm{Ac})]$ and $16.6\left(\mathrm{C}-2^{\prime}\right)$.

Acknowledgements

Support of this project by the Fonds der Chemischen Industrie and the Ministerium für Wissenschaft und Forschung, BadenWürttemberg (Schwerpunkt 'Synthese-Enzyme') is gratefully acknowledged. We thank Prof. Dr. H. Fritz, Dr. D. Hunkler and Dr. J. Wörth for NMR and MS analyses, and Dr. L. Knothe for help with the manuscript.

References

1 R. Okachi, S. Takasawa, T. Sato, S. Sato, M. Yamamoto, I. Kawamoto and T. Nara, J. Antibiot. (Tokyo), 1977, 30, 541; R. S.

Egan, R. S. Stanaszek, M. Cirovic, S. L. Mueller, J. Tadanier, J. R. Martin, P. Collum, A. W. Goldstein, R. L. DeVault, A. C. Sinclair, E. F. Fager and L. A. Mitcher, J. Antibiot. (Tokyo), 1977, 30, 552.

2 T. Deushi, Y. Yamaguchi, K. Kamiya, A. Iwaski, T. Mizoguchi, M. Nakayama, M. Okuchi, H. Hoh and T. Mori, J. Antibiot. (Tokyo), 1980, 33, 1274 and references therein.
3 T. Deushi, I. Watanabe, A. Iwasaki, K. Kamiya, T. Mizoguchi, M. Nakayama, M. Okuchi, H. Hoh and T. Mori, J. Antibiot. (Tokyo), 1981, 34, 811 and references therein.
4 Script-World Pharmaceutical News, October 18th, 1982, p. 5; June 23rd, 1982. p. 15; January 15th, 1988, pp. 1063, 1236.
5 (inter alia) (a) Y. Honda and T. Suami, Bull. Chem. Soc. Jpn., 1982, 55, 1156; (b) K. Kanai, I. Sakamoto, Y. Miyamoto, S. Ogawa and T. Suami, Bull. Chem. Soc. Jpn., 1987, 60, 261; (c) K. Kanai, J. Nishigaki, S. Ogawa and T. Suami, Bull. Chem. Soc. Jpn., 1987, 60, 261; (d) K. Kanai, S. Ogawa and T. Suami, Bull. Chem. Soc. Jpn., 1987, 60. 2079; (e) W. Rosenbrook, Jr. and J. S. Fairgrieve, J. Antibiot. (Tokyo), 1981, 34, 681; (f) N. Sakairi, M. Hayashida and H. Kuzuhara, Tetrahedron Lett., 1987, 28, 2871.
6 J. Schubert, R. Schwesinger and H. Prinzbach, Angew. Chem., Int. Ed. Engl.. 1984, 23, 167; J. Schubert, R. Schwesinger, L. Knothe and H. Prinzbach. Liebigs Ann Chem., 1986, 2009; R. Kühlmeyer, R. Schwesinger and H. Prinzbach, Tetrahedron Lett., 1984, 25, 3429.

7 P. Klüwer. M. Keller, S. Haitz and H. Prinzbach, manuscript in preparation.
8 R. Kühlmeyer, B. Seitz, T. Weller, H. Fritz, R. Schwesinger and H. Prinzbach, Chem. Ber., 1989, 122, 1729.

9 B. Seitz. R. Kühlmeyer, T. Weller, W. Meier, C. Ludin, R. Schwesinger, L. K nothe and H. Prinzbach, Chem. Ber., 1989. 122, 1745.

10 C. Hoenke, P. Klüwer, U. Hugger, R. Krieger and H. Prinzbach, Tetrahedron Lett., 1993, 34, 4761.
11 W. Meier. B. Seitz, C. Hoenke and H. Prinzbach, Chem. Ber., in the press.
12 C. Ludin. T. Weller, W. Meier, C. Hoenke, S. Erbeck, S. Haitz and H. Prinzbach. Chem. Ber., in the press.

13 C. Ludin. W. Meier, C. Hoenke and H. Prinzbach, Chem. Ber., manuscript in preparation.
14 S. David. A. Lubineau and S. D. Gero, J. Org. Chem., 1979 , 44, 4986: J. Cleophax, S. D. Gero, E. Jegou-Aumont, J. Leboul and D. Mercier. J. Chem. Soc., Chem. Commun., 1975, 11; A. Golebiowski, U. Jacobsson, M. Chmielewski and J. Jurczak, Tetrahedron. 1987, 43, 599; P. J. Garreg, R. Johansson and B. Samuelsson, J. Carbohydr. Chem., 1984, 3, 189; R. D. Guthrie and G. J. Williams, J. Chem. Soc., Perkin Trans. 1, 1972, 2619; J. Chem. Soc. $D, 1971.923$.
15 J. S. Brimacombe, I. Da'aboul and L. C. N. Tucker, J. Chem. Soc., Perkin Trans. I, 1975, 979.
16 J. S. Brimacombe, F. Hunedy, A. M. Mather and L. C. N. Tucker, Carhohydr. Res., 1979, 68, 231.
17 S. Umerawa. Y. Okazaki and T. Tsuchiya, Bull. Chem. Soc. Jpn., 1972, 45. 3619.
18 (a) J. Cleophax, J. Leboul, A. Olesker and S. D. Gero, Tetrahedron Lett., 1973. 4911; S. Rakhit and M. Georges, J. Carbohydr., Nucleosides, Nucleotides, 1975, 2, 153; Y. Ohashi, S. Okuno, K. Takeda and Y. Ito, Carbohydr. Res., 1978, 67, 503; (b) T. Suami, Y. Honda. T. Kato, M. Masu and K. Matsuzawa, Bull. Chem. Soc. Jpn. 1980. 53, 1372.
19 H. Sano. T. Sakaguchi and Y. Mori, Bull. Chem. Soc. Jpn., 1979, 52, 2727; M. Chmielewski, A. Konowal and A. Zamojski, Carbohydr. Res., 1979. 70, 275.
20 K. Kanai. 1. Sakamoto, S. Ogawa and T. Suami, Bull. Chem. Soc. Jpn. . 1987, 60, 1529; N. Yasuda, K. Matsuda, H. Tsutsumi and T. Takaya. Curbohydr. Res., 1986, 146, 51; Y. Honda and T. Suami, Bull. Chem. Soc. Jpn., 1981, 54, 2825; T. Suami, Y. Honda and T. Kato. Chem. Lett., 1978, 1125; see also ref. $18 b$.

21 A. Golebiowski, U. Jacobsson, J. Raczko and J. Jurczak, J. Org. Chem. 1989, 54, 3759; J. Jurczak, A. Golebiowski and J. Raczko, Tetrahedron Lett., 1988, 29, 5975; A. Golebiowski, U. Jacobsson and J. Jurczak, Tetrahedron, 1987, 43, 3063.
22 K. Kamiyama, Y. Urano, S. Kobayashi and M. Ohno, Tetrahedron Lett. 1987, 28, 3123.
23 Y. Honda and T. Suami, Chem. Lett., 1980, 641; K. Kanai, I Sakamoto, Y. Miyamoto, S. Ogawa and T. Suami, Bull. Chem. Soc. $J p n ., 1987,60,255$; see also refs. $5 a, b, d, e$.
24 N. Yasuda, K. Matsuda, H. Tsutsumi and T. Takao, J. Antibiot. (Tokyo), 1985, 38, 1512; see also ref. $5 f$.

25 J. S. Brimacombe, I. Da'aboul and L. C. N. Tucker, J. Chem. Soc., Perkin Trans. 1, 1974, 263.
26 For a preliminary account see B. Schwesinger, R. Schwesinger and H. Prinzbach, Tetrahedron Lett., 1984, 25, 1979; Research report, Dr. B. Schwesinger, University of Freiburg, 1984.
27 R. U. Lemieux, T. L. Nagabushan and S. W. Gunner, Can. J. Chem. 1968, 46, 405; R. U. Lemieux, T. L. Nagabushan, K. J. Clemetson and L. C. N. Tucker, Can. J. Chem., 1973, 51, 53; R. U. Lemieux, F. F. Z. Georges and Z. Smiatacz, Can. J. Chem., 1981, 59, 1433.
28 T. Weller, Dissertation, University of Freiburg, 1988.
29 R. Schwesinger, personal communication.
30 A. W. Frahm and G. Knupp, Tetrahedron Lett., 1981, 22, 2633.
31 H. Spreizer, G. Buchbauer and Ch. Püringer, Tetrahedron, 1989, 45, 6999; cf. F. W. Lichtenthaler, E. Kaji and S. Weprek, J. Org. Chem., 1985, 50, 3505; J. N. Glushka and A. S. Perlin, Carbohydr. Res., 1990, 205, 305; A. Banaszek and W. Karpiesiuk, Carbohydr. Res., 1994, 251, 233.
32 J. Ipaktschi, Chem. Ber., 1984, 117, 856.
33 H. Paulsen and O. Lockhof, Chem. Ber., 1981, 114, 3102.
34 S. Hünig and W. Baron, Chem. Ber., 1957, 90, 395, 403.
35 T. Kametani, N. Wagatsuma, K. Wakisaka, K. Kigasawa and M. Hiiragi, Tetrahedron Lett., 1969, 635; H. Ford, H. C. Chang and E. J. Behrmann, J. Am. Chem. Soc., 1981, 103, 7773.

36 V. Simanek and A. Klasek, Tetrahedron Lett., 1969, 3039.
37 A. C. Cope, E. Ciganek, L. J. Fleckenstein and M. A. P. Meisinger, J. Am. Chem. Soc., 1960, 82, 4651.

38 M. Regitz, Angew. Chem., 1967, 79, 786; K. Turnbull and E. Scriven, Chem. Rev., 1988, 88, 297.
39 W. Marterer, H. Prinzbach, G. Rihs, J. Wirz, J. Lecoultre and E. Heilbronner, Helv. Chim. Acta, 1988, 71, 1937.

40 A. Vasella, C. Witzig, J.-L. Chiara and M. Martin-Lomas, Helv. Chim. Acta, 1991, 74, 2073.
41 D. J. Copper, R. S. Jaret and H. Reimann, Chem. Commun., 1971, 285, 924.
42 W. S. Trahanovski and M. D. Robbins, J. Am. Chem. Soc., 1971, 93, 5256; R. S. Hansen and W. S. Trahanovski, J. Org. Chem., 1974, 39, 570.

43 R. U. Lemieux and R. M. Ratcliffe, Can. J. Chem., 1979, 57, 1244; S. Subramaniam and R. U. Lemieux, Can. J. Chem., 1984, 62, 644; T. C. Wong and R. U. Lemieux, Can. J. Chem., 1984, 62, 1207.

44 K. Briner and A. Vasella, Helv. Chim. Acta, 1987. 70, 1341; J. P. Lorentzen, W. Kutschker and H. Paulsen, Carbohydr. Res., 1985, 136, 153; E. Darakas, H. Hultberg, K. Leontein and J. Lönngren, Carbohydr. Res., 1982, 103, 176; W. Kinzy and R. R. Schmidt, Liebigs Ann. Chem., 1985, 1537; Tetrahedron Lett., 1987, 28, 1981; S. Czernecki and D. Randriamandimby, Tetrahedron Lett., 1993, 34, 7915; R. Csuk and B. I. Glänzer, J. Chem. Soc., Chem. Commun., 1986, 343; K. Igarashi, T. Honma and T. Imagawa. J. Org. Chem., 1970, 35, 610; P. Boullanger and G. Descotes, Carbohydr. Res., 1976, 55, 55; I. Banoub, P. Boullanger and D. Lafont, Chem. Rev. 1992, 92, 1167; K. Toshima and K. Tahuda, Chem. Rev., 1993, 93. 1503.
45 F. Yang, M. Keller and H. Prinzbach, to be published.
46 R. D. McKelvey, T. Sugawara and H. Iwamura, Magn. Reson. Chem., 1985, 23, 330.
47 C. A. Bunton, T. A. Lewis, D. R. Llewellyn and C. A. Vernon, J. Chem. Soc., 1955, 4419; J. N. BeMiller, Adv. Carbohydr. Chem., 1967, 22, 25; G. Legler, Adv. Carbohydr. Chem. Biochem., 1990, 48, 319.
48 S. Haitz, part of Dissertation, University of Freiburg.
49 F. Yang, C. Hoenke and H. Prinzbach, unpublished results.
50 H. Komada, M. Okada and H. Sumimoto, Makromolecules, 1979, 12, 5; N. Ibrabim, T. Eggimann, E. A. Dixon and H. Wieser, Tetrahedron, 1990, 46, 1503; J. L. Krstenansky, M. del RosarioChow and B. L. Currie, J. Heterocycl. Chem., 1992, 29, 707; more recently a kinetic resolution for rac-1 through a Horner-Wadsworth-Emmons reaction has been reported: T. Rein, N. Kann, R. Kreuder, B. Gangloff and O. Reiser, Angew: Chem., 1994, 106, 597; Angew. Chem., Int. Ed. Engl., 1994, 106, 596.
51 S. Erbeck, part of Dissertation, University of Freiburg.
52 J. Thiem, in Trends in Synthetic Carbohydrate Chemistry, ed. D. Horton, L. D. Hawkins and G. J. McGarvey, ACS Symposium Series, 1989, vol. 386, p. 131.

Paper 4/01768D
Received 24th March 1994
Accepted 25th May 1994

[^0]: \dagger Degussa Co. has kindly provided us with kg quantities of rac-1.

[^1]: \dagger Racemic 3,4-dihydro-2H-pyran-2-carboxylic acid and rac-6-amino-methyl-3,4-dihydro-2H-pyran have recently been resolved [with dehydroabiethylamine and $(+)$-tartaric acid respectively]. ${ }^{50}$

